Through the Language Glass: Why the World Looks Different in Other Languages
Page 9
It is hard to say for certain where exactly the difficulty lay. Was it primarily the unfamiliar notion that a vast empty space, rather than a tangible object, can have a color at all? Or was it that the pale unsaturated blue of the sky is actually very different from the highly saturated blues of artificial objects? Perhaps my anecdotal evidence will inspire others to examine this question more systematically. But even without the benefit of such research, the mere fact that Alma found this particular blueness so challenging makes it easier to imagine why people who may never have clapped eyes on blue objects do not lose much sleep over the color of the sky. If that quintessence of azurity, that “most perfect example of blue,” is actually far from obvious even under conducive circumstances, then it seems far less surprising that people who have never seen an object with a color similar to the sky fail to find a special name for this great expanse of nothingness. And if they are nevertheless pressed to give some answer by a nagging anthropologist, is it not natural that they would choose the closest color label in their limited palette and say “black” or “green”?
The final exercise that can help to demonstrate the power of cultural conventions is a bit of science fiction fantasizing. Imagine we are sometime in the distant future when every home is equipped with a machine that looks a bit like a microwave but in fact does far more than merely warm food up. It creates food out of thin air—or rather out of frozen stock cubes it teleports directly from the supermarket. Put a cube of fruit stock in the machine, for example, and at the touch of a few buttons you can conjure up any imaginable fruit: one button gives you a perfectly ripe avocado, another button a juicy grapefruit.
But this is an entirely inadequate way to describe what this wonderful machine can do, because it is by no means limited to the few “legacy fruits” that were available in the early twenty-first century. The machine can create thousands of different fruits by manipulating the taste and the consistency on many different axes, such as firmness, juiciness, creaminess, airiness, sliminess, sweetness, tanginess, and many others that we don’t have precise words to describe. Press a button, and you’ll get a fruit that’s a bit like an avocado in its oily consistency, but with a taste halfway between a carrot and a mango. Twiddle a knob, and you’ll get a slimy lychee-like fruit with a taste somewhere between peach and watermelon.
In fact, even coarse approximations like “a bit like X” or “halfway between Y and Z” do not do justice to the wealth of different flavors that will be available. Instead, our successors will have developed a rich and refined vocabulary to cover the whole space of possible tastes and consistencies. They will have specific names for hundreds of distinct areas in this space and will not be bound by the few particular tastes of the fruit we happen to be familiar with today.
Now imagine that an anthropologist specializing in primitive cultures beams herself down to the natives in Silicon Valley, whose way of life has not advanced a kilobyte beyond the Google age and whose tools have remained just as primitive as they were in the twenty-first century. She brings along with her a tray of taste samples called the Munsell Taste System. On it are representative samples of the whole taste space, 1,024 little fruit cubes that automatically reconstitute themselves on the tray the moment one picks them up. She asks the natives to try each of these and tell her the name of the taste in their language, and she is astonished at the abject poverty of their fructiferous vocabulary. She cannot comprehend why they are struggling to describe the taste samples, why their only abstract taste concepts are limited to the crudest oppositions such as “sweet” and “sour,” and why the only other descriptions they manage to come up with are “it’s a bit like an X,” where X is the name of a certain legacy fruit. She begins to suspect that their taste buds have not yet fully evolved. But when she tests the natives, she establishes that they are fully capable of telling the difference between any two cubes in her sample. There is obviously nothing wrong with their tongue, but why then is their langue so defective?
Let’s try to help her. Suppose you are one of those natives and she has just given you a cube that tastes like nothing you’ve ever tried before. Still, it vaguely reminds you of something. For a while you struggle to remember, then it dawns on you that this taste is slightly similar to those wild strawberries you had in a Parisian restaurant once, only this taste seems ten times more pronounced and is blended with a few other things that you can’t identify. So finally you say, very hesitantly, that “it’s a bit like wild strawberries.” Since you look like a particularly intelligent and articulate native, the anthropologist cannot resist posing a meta-question: doesn’t it feel odd and limiting, she asks, not to have precise vocabulary to describe tastes in the region of wild strawberries? You tell her that the only things “in the region of wild strawberry” that you’ve ever tasted before were wild strawberries, and that it has never crossed your mind that the taste of wild strawberries should need any more general or abstract description than “the taste of wild strawberries.” She smiles with baffled incomprehension.
If all this sounds absurd, then just replace “taste” with “color” and you’ll see that the parallel is quite close. We do not have the occasion to manipulate the taste and consistency of fruit, and we are not exposed to a systematic array of highly “saturated” (that is, pure) tastes, only to a few random tastes that occur in the fruit we happen to know. So we have not developed a refined vocabulary to describe different ranges of fruity flavor in abstraction from a particular fruit. Likewise, people in primitive cultures—as Gladstone had observed at the very beginning of the color debate—have no occasion to manipulate colors artificially and are not exposed to a systematic array of highly saturated colors, only to the haphazard and often unsaturated colors presented by nature. So they have not developed a refined vocabulary to describe fine shades of hue. We don’t see the need to talk about the taste of a peach in abstraction from the particular object, namely a peach. They don’t see the need to talk about the color of a particular fish or bird or leaf in abstraction from the particular fish or bird or leaf. When we do talk about taste in abstraction from a particular fruit, we rely on the vaguest of opposites, such as “sweet” and “sour.” When they talk about color in abstraction from an object, they rely on the vague opposites “white/light” and “black/dark.” We find nothing strange in using “sweet” for a wide range of different tastes, and we are happy to say “sweet a bit like a mango,” or “sweet like a banana,” or “sweet like a watermelon.” They find nothing strange in using “black” for a wide range of colors and are happy to say “black like a leaf” or “black like the sea beyond the reef area.”
In short, we have a refined vocabulary of color but a vague vocabulary of taste. We find the refinement of the former and vagueness of the latter equally natural, but this is only because of the cultural conventions we happen to have been born into. One day, others, who have been reared in different circumstances, may judge our vocabulary of taste to be just as unnatural and just as perplexingly deficient as the color system of Homer seems to us.
CULTURE’S TRIUMPH
If it now feels a little easier to appreciate the power of culture over the concepts of language, then we can return to our story just in time to witness the outright triumph of culture in the early twentieth century. For it is an irony of history that while Rivers himself was unable to grasp the full force of culture, it was his work that was largely responsible for securing culture’s victory. In the end, what made the real impression was not Rivers’s agonized interpretation of the facts he was reporting but the force of the facts themselves. His expedition reports were so honest and so meticulously thorough that others could look through his argumentation and reach exactly the opposite conclusion from the facts: that the islanders could see blue and all other colors just as clearly and vividly as we do and that their indistinct vocabulary of color had nothing to do with their vision. In the following years, some influential reviews of Rivers’s work appeared in America, where the
vanguard of anthropological research was now forming. These reviews finally established a consensus about the universality of color vision among different races and, by implication, about the stability of color vision in the previous millennia.
This developing consensus was also corroborated by advances in physics and biology, which had exposed the critical flaws in Magnus’s scenario of recent refinements in color vision. The Lamarckian nature of Magnus’s model now emerged as just one of the gaping holes in his Emmental of a theory. Magnus’s physics of light, for example, turned out to be entirely upside down (or, rather, violet-side red). He had assumed that red light was the easiest color to perceive because it had the highest energy. But by 1900, it had become clear through the work of Wilhelm Wien and Max Planck that the long-wave red light actually has the lowest energy. Red is in fact the coolest light: a rod of iron glows red only because it is not yet very hot. Older and cooler stars glow red (red dwarves), whereas really hot stars glow blue (blue giants). It is actually the violet end of the spectrum that has high energy, and ultraviolet light has even higher energy, enough in fact to damage the skin, as we are constantly reminded nowadays. Magnus’s belief that the retina’s sensitivity to colors increased continuously along the spectrum also proved to be misguided, since, as explained in the appendix, our perception of color is based on only three distinct types of cells in the retina, called cones, and everything suggests that the development of these cones proceeded not continuously but in discrete leaps.
In short, by the first decades of the twentieth century it had become clear that the tall story about recent physiological changes in vision had been a red herring. The ancients could see colors just as well as we do, and the differences in color vocabulary reflect purely cultural developments, not biological ones. Just as one Great War was beginning in the political arena, another great war seemed to have ended in the realm of ideas. And culture was the outright winner.
But culture’s triumph did not solve all mysteries. In particular, it left one riddle dangling: Geiger’s sequence. Or rather, it should have done.
til-la ša-du11-ba-ta ud-da an-ga-me-a.
The life of yesterday was repeated today.
(Sumerian proverb, early second millennium BC)
r ntt rf wmw dddwt, w dddwt dd(w).
What is said is just repetition, what has been said has been said.
(“The Complaints of Khakheperre-seneb,”
Egyptian poem, early second millennium BC)
What has been is what will be, and what has been done is what will be done; there is nothing new under the sun. Even if there is anything of which one might say, “See this, it is new,” it has already existed in ages that have gone before us. There is no memory of those in the past; of those in the future there will be no memory among those who will come afterwards.
(Ecclesiastes 1:9, ca. third century BC)
Nullum est iam dictum, quod non dictum sit prius.
Nothing is now said that has not been said before.
(Terence, The Eunuch, 161 BC)
Pereant qui ante nos nostra dixerunt.
Perish those who said our things before us.
(Aelius Donatus, commentary on Terence, fourth century AD)
4
Those Who Said Our Things Before Us
The year 1969 was particularly blessed with momentous historical events: man landed on the moon, I was born, and a little book called Basic Color Terms: Their Universality and Evolution was published in Berkeley and became an instant sensation in linguistics and anthropology. Such was its revolutionary impact that forty years later, most linguists believe that the study of color started in the summer of ’69. And even those who are vaguely aware that anyone had given any thought to the subject before Basic Color Terms would still consider the pre-1969 period as distant prehistory, a Dark Age of no relevance or consequence except perhaps for ancient historians. To appreciate why one book had such an explosive effect, we have to step back to where our story left off and witness the curious fate that befell Geiger’s sequence in the early decades of the twentieth century. Or, to be more precise, we have to diagnose one of the severest cases of collective amnesia in the history of science.
It would be natural to expect that once culture had asserted its authority over the concepts of color, an obvious question would land at the top of everyone’s to-do list: Why do the color names of so many unrelated languages nevertheless evolve in such a predictable order? If each culture can refine its color vocabulary according to its whim and special circumstances, then why do peoples from the polar regions to the tropics, from Africa to America, always have a word for red, for instance, even if they have names for no other prismatic color? Why are there no desert languages with a name just for yellow but not for anything else? Why are there no jungle languages with names only for green, brown, and blue? The old explanation for Geiger’s sequence, which blamed it on the evolution of the retina during the last millennia, was now off the table. But if it was not the gradual refinement of vision that determined the order in which color names emerge, an alternative explanation for Geiger’s evolutionary progression was needed. Surely, then, the search for this explanation would now become the most pressing task on the agenda.
But linguists and anthropologists had other agendas. Instead of trying to solve the question, they chose to ignore it. It was as if the whole research community had fallen under an enchantment of forgetfulness, for within a few years Geiger’s sequence simply faded from consciousness and was never heard of again. This turn of events may seem barely comprehensible at first, but it must be viewed in the context of the seismic shifts in worldview that the human sciences were undergoing at the time: the profound changes in attitudes toward so-called savages and the growing abhorrence of any hierarchies that graded ethnic groups according to their alleged degree of evolution, a term that among anthropologists was rapidly becoming a dirty word.
The received opinion in the nineteenth century had been that the “savages” were anatomically inferior to civilized people, and that they were not fully evolved humans. It was widely assumed that various ethnic groups around the globe simply represented earlier way stations in the biological evolution of European man. The attitudes of the outgoing century were nowhere better summed up than in the huge exhibition that took place in the first years of the new century—the Louisiana Purchase Exposition of 1904. This grand event, the greatest world’s fair to date, was held in St. Louis, Missouri, to commemorate the centenary of the Louisiana Purchase (Thomas Jefferson’s acquisition from Napoleon of a huge chunk of the North American continent). One of the main highlights of the Louisiana Purchase Exposition was an unprecedentedly large anthropological display. Exotic ethnic groups from all over the world were brought to St. Louis and exhibited in separate “villages” arranged according to their alleged degree of evolution. The official report of the exposition explained its choice of the range of races on display in the following words (take a big breath!): “The physical types chosen for representation were those least removed from the sub-human or quadrumane [ape] form, beginning with the pygmy aborigines of Africa, and including the negrito folk of interior Mindanao [Philippines]; the Ainu of the northern island of the Japanese Archipelago . . . and varying physical types among North American natives.”
As hard as such sentiments are to comprehend in retrospect, they were not at odds with the scientific assumptions of the time. Given the general belief in the inheritance of acquired characteristics, it was only natural to conclude that primitiveness was a state one is born with, not merely born into. For if the mental attitudes of one generation affect the offspring’s heredity, then it follows fairly logically that primitiveness is a biologically inherited condition, not just a state of education. It was widely accepted, for example, even among the most enlightened of scientists, that mental traits such as tendency toward superstition, lack of inhibition, and lack of powers of abstraction were all hereditary traits that characterized the “low sava
ges.”
All this began to change, however, in the early years of the new century. As doubts about the inheritance of acquired characteristics increased, the belief in biological primitiveness was gradually laid to rest and made way for a new understanding of culture’s sovereignty over mental traits. In America, it was now being explicitly proclaimed as a tenet of anthropological science that culture was the only admissible factor in explaining mental differences between ethnic groups. The gulf between the old and new attitudes is nowhere more apparent than in the differences between the official report of the Louisiana Purchase Exposition and an alternative account by the psychologist Robert Woodworth from Columbia University, the center of the new American anthropology. Woodworth had been inspired by Rivers’s experimental methods with the Torres Strait islanders (though not impressed by Rivers’s interpretation of his results) and decided to use the gathering of so many different ethnic groups in St. Louis to conduct his own examinations. He tested hundreds of people from different races and ethnic types, not just for vision but also for many other mental processes. His findings about those whom the official report characterized as “least removed from the sub-human” were published in the magazine Science in 1910 and may now appear as the most banal statement of the obvious, but at the time they seemed so radical that they had to be hedged with a profusion of “maybe’s,” “possibly’s,” and “probably’s.” The underlying message was crystal clear nonetheless: “We are probably justified in inferring that the sensory and motor processes, and the elementary brain activities, though differing in degree from one individual to another, are about the same from one race to another.”