Book Read Free

Before the Dawn: Recovering the Lost History of Our Ancestors

Page 11

by Nicholas Wade


  The Enigma of the Andaman Islanders

  Australian aborigines are not the only trace population left from the original migration. All along the route back to Africa, in remote islands or out of the way places where later invaders could be resisted, there are unusual peoples whose genetics suggest an ancestry from the original emigrants. All are tribal, mostly forest-living groups who have managed to resist intermarriage or integration. They include some of the tribal peoples of India, such as the australoid Chenchus and Koyas of Andhra Pradesh, as well as the Negritos, forest dwellers found in the Andaman Islands, Malaysia and the Philippines. Many of these peoples have dark skin, as if retained from their African origins.

  The Andaman Islanders are one of the most intriguing of these relict populations. The Andaman Islands lie in the Bay of Bengal, some 120 miles from the coast of Burma, but with the lower sea levels of 50,000 years ago the distance may have been as little as 40 miles. Since the first emigrants from Africa were capable mariners, as proved by their reaching Sahul, the Andaman Islands would also have lain within their reach.

  The islands were long avoided by contemporary sailors, their occupants having a fearsome reputation for extreme hostility and cannibalism. According to a British survey in 1858, the islands were inhabited by some 13 different tribes, each with its own language and territory, and some in a state of perpetual warfare with each other. Many of the northern tribes, known as the Greater Andamanese, were decimated by contact with western diseases, and within 50 years of British occupation almost all had perished. Only three of the peoples, all from the southern islands, now survive. They are the Onge, the Jarawa and the Sentinelese.

  The origin of the Andamanese has long been a puzzle. Their features—short stature, dark skin, peppercorn hair and protruding buttocks, a feature known as steatopygia—are characteristic of African pygmies. “They look like they belong in Africa, yet here they are sitting in this island chain out in the middle of the Indian Ocean,” says Peter Underhill, an expert on Y chromosome lineages. “People have been scratching their heads for 200 years asking who are these people and where do they come from.”103

  To address the question, two teams of researchers recently analyzed the islanders’ DNA. Erika Hagelberg of the University of Oslo worked with blood samples from the Onge and Jarawa; she also extracted mitochondrial DNA from hair samples that had been collected from the Greater Andamanese by the ethnographer Alfred Radcliffe-Brown from 1906 to 1908.104 A second team, led by Alan Cooper of the University of Oxford, obtained mitochondrial DNA from a collection of Andamanese skulls in the Natural History Museum in London; the ancient DNA was extracted from the pulp of teeth. 105

  Both teams found that the Andamanese belonged to the M2 mitochondrial lineage, and infer that they were part of the early migration of humans from Africa into southern Asia. The Y chromosomes of the Onge and Jarawa confirm the view that the Andamanese are an ancient, Asian people.

  Their physical similarities with the African pygmies seem therefore to be what biologists call a convergent feature, meaning one acquired by independent evolution. Presumably when people start to live in forests, there are advantages in developing particular characteristics like short stature and steatopygia. The Biaka pygmies of the Central African Republic and the Mbuti pygmies of the Congo belong to different mitochondrial DNA lineages and presumably evolved pygmy stature independently of each other and the Andamanese.

  With their dark skin and other African features, the Andamanese and other australoid peoples may represent what the early inhabitants of East Asia and Europe looked like before being displaced many thousands of years later by people from northern latitudes.

  Another clue to the great age of the Andaman Islanders comes from language. Like the ancient !Kung and Hadza click languages, the Andamanese languages are isolates, meaning they are unlike each other and unlike any known language. The linguist Edward Sapir is said to have told his students that the world’s languages are divided into two classes, Andamanese and all the rest.106 This distinctiveness is another sign of great antiquity,

  Joseph Greenberg, in his classification of the world’s languages, placed Andamanese in a superfamily he called Indo-Pacific. The other members of Indo-Pacific are Tasmanian and the ancient Papuan languages of New Guinea. Like several of Greenberg’s classifications, Indo-Pacific is not widely accepted by other linguists. But the grouping can now be seen to have put together languages that have another striking feature in common—all are spoken by people in remote regions who may be descendants of the first migration of modern humans from Africa to the foundered continent of Sahul.

  The Penetration of East Asia and Indonesia

  Australia was not the only destination for the first settlers of Asia. While some people crossed the straits from Sunda to Sahul, others presumably continued eastward around the southern borders of Sunda. They would have followed the coastline northward, up the eastern coast of China until they reached Japan and the Kamchatka peninsula, leaving a trail of settlements in their wake.

  These groups, finding the coastlines in either direction inhabited, would eventually have started to push inland. They would have used rivers as highways into the interiors of India, Indochina, China and Central Asia, according to a reconstruction by the medical geneticist Stephen Oppenheimer. “Geography and climate decided the newly arrived occupants of Asia where to go next,” he writes. “The rules would have been simple: stay near water, and near reliable rainfall; when moving, avoid deserts and high mountains and follow the game and the rivers.”107

  The penetration of the Eurasian land mass would have brought modern humans into direct conflict with the archaic humans who had long possessed it, certainly with the Neanderthals in the west and perhaps with Homo erectus in the east. Possibly this invasion was delayed for many generations until the innovative moderns had developed the necessary weapons and tactics to defeat the archaics or perhaps, less dramatically, until they had evolved the genetic adaptations for living in cold climates. The interaction between these different human species is of the greatest interest, but so far there is little data to go on, except the stark fact that one survived and all others perished.

  In the east, for lack of archaeological studies, it is not yet known how widespread were the populations of Homo erectus, or whether in fact their disappearance had anything to do with the advance of the moderns. But the two human species did overlap in various ways, according to two quite unexpected pieces of recent evidence. The first comes from that intimate observer of human evolution, the human body louse.

  David Reed, a louse specialist at the Florida Museum of Natural History, has found that people around the world carry two distinct groups of body lice that look alike but have genetically different histories. He made the discovery by constructing genealogies of the lice’s mitochondrial DNA, just like other geneticists have done for people. But whereas all human mitochondrial DNA falls on the branches of a single tree, the louse DNA falls into two separate clusters. One of the clusters matches the human mitochondrial DNA tree both in date and geographical distribution, just as would be expected if the lice had divided into separate populations like their human hosts after the dispersal from Africa. The second cluster of louse DNA coalesces with the first but only in the distant past, some 1.8 million years ago, as if it had been living for most of the time on a different host.

  Lice are highly specialized organisms and human lice cannot live for more than a few hours away from the warmth and sustenance of the human body. So this second cluster of lice must have been living on humans; it’s just that they were of a different species, Dr. Reed believes. He suggests that they traveled out Africa with the ancestors of Homo erectus and much later switched across to the modern humans who came into physical contact with the Homo erectus populations in Asia some 50,000 years ago. 108

  A second and even more astonishing overlap between modern humans and Homo erectus was recently reported from the Indonesian island of Flores, which lies b
etween Indonesia and Australia. From the floor of a riverside cave, archaeologists recovered a series of fossil human remains of which the oldest is 95,000 years and the youngest 13,000 years. The remains belong to some seven individuals and include one complete skull. These people stood about three and half feet tall but were not human pygmies. Rather, they were a downsized version of Homo erectus, according to their discoverers and other experts. 109

  Island geography imposes special evolutionary constraints on arriving species, often propelling small species to giant size and downsizing large ones. The island of Flores was home to a species of giant rat and to lizards that evolved into the carnivorous Komodo dragons, 10 feet in length, as well as an even larger lizard, now extinct. This lost world was roamed by packs of pygmy elephants. And its human occupants too, it seems, were also downsized.

  The little Floresians present many paradoxes with which paleoanthropologists are still grappling. They made sophisticated stone tools similar to those crafted by modern humans and unlike any previously associated with Homo erectus. Yet their brains, miniaturized along with their bodies, were about the same size as those of chimpanzees and the australopithecines, neither of which could fashion stone tools. Skeptics suggest that if the Floresians made the tools found with them, they must be modern humans, perhaps of some pathological form. But other experts say the surviving skull is clearly of erectus descent and shows no sign of pathology.353

  On present evidence it seems that the little Floresians were descendants of Homo erectus who managed to endure some 35,000 years into the modern era, long after the rest of their species had perished. They owed their survival to living unobtrusively in a forest on a remote island. The only way that erectus could survive in the modern era, it seems, was by becoming essentially invisible to the new arrivals.

  The Long Struggle against the Neanderthals

  Unlike the still fragmentary evidence about the fate of Homo erectus, much more is known about the interactions of modern humans with the Neanderthals, the archaic humans who occupied Europe and the Near East. The Neanderthals, who evolved west of the Urals some 127,000 years ago, were a strikingly distinct variation on the human theme. Their bodies were stocky, with barrel chests and muscles like weightlifters’. They had large heads, with bony brow ridges on the front of their skulls, and strange buns or ridges on the back.

  These special features may have been either a biological adaptation to cold, or the result of genetic drift, the random change in gene frequencies between generations. Genetic drift is especially powerful in reshaping small populations, as the early Neanderthals may have been.

  Neanderthal remains include many broken and healed bones, suggesting their lifestyle was physically taxing—whether because of hunting game or each other is hard to say. Some skeletons bear injuries so severe that their owners seem likely to have depended on others to survive, suggesting that Neanderthals looked after their sick. They also, on occasion, practiced cannibalism, to judge by the cut and burned bones found at several sites. In both their pleasant and less pleasant behaviors, in other words, they were quite human.

  Their brain size covered the same range, and in some cases exceeded, that of modern humans.110 But their behavior was quite different. They used the same unvarying tool kit as anatomically modern humans, the forebears of the behaviorally modern people. They buried their dead in shallow graves, but there is no indisputable evidence that the burials were accompanied by ritual. At the Shanidar cave, in northwestern Iraq, a skeleton exhumed with large amounts of pollen pleasantly suggested floral tributes from fellow Neanderthals. But until any similar burial is found, the simpler explanation is that the pollen was imported by the rodents whose burrows honeycombed the grave fill.111 There is some evidence that the Neanderthals were less socially cohesive. 112 Although they seem to have displaced anatomically modern humans from the Near East 100,000 years ago, they were unprepared for the highly innovative behavior of the humans who arrived on their doorstep 45,000 years ago.

  “It is not difficult to understand why the Neanderthals failed to survive after behaviorally modern humans appeared,” writes the paleoanthropologist Richard Klein. “The archaeological record shows that in virtually every detectable aspect—artifacts, site modification, ability to adapt to extreme environments, subsistence and so forth—the Neanderthals were behaviorally inferior to their modern successors, and to judge from their distinctive morphology, this behavioral inferiority may have been rooted in their biological makeup.”113 It is impossible to tell from their skeletal remains whether or not Neanderthals could speak, but the crux of their behavioral inferiority may have lain in their possessing only a crude, syntax-free proto-language, or perhaps no language at all.

  Some anthropologists have argued that the first modern humans may have interbred with Neanderthals. Given the hostility of human hunter-gatherer societies toward each other, and the extreme fear that the Neanderthals seem likely to have evoked in modern humans, it is hard to imagine that the two species enjoyed hanging out with each other, let alone that they would welcome an exchange of marriage partners. The human mitochondrial DNA and Y chromosome trees each coalesce to a single ancestor in Africa, with no sign of a Neanderthal contribution in either lineage.

  The genetic separateness of Neanderthals was emphasized in 1997 in a dramatic feat of research by Matthias Krings and Svante Pääbo, then of the University of Munich in Germany. They managed to extract mitochondrial DNA from the original specimen of Neanderthal, some 40,000 years old, which was found in the Neander valley near Düsseldorf in 1856.114 The DNA of the chromosomes in the cell’s nucleus degrades quickly after death but the little ring of mitochondrial DNA, with about 1,000 copies in each cell, has a better chance of surviving for long periods. The extraction of the DNA was a technical tour de force, which many others had attempted but failed to do, in part because the method for amplifying DNA is prone to increase not just the target DNA but, even more so, the contaminating samples of human DNA that abound in every laboratory and handled object.

  The Munich team managed to decipher only a small segment of mitochondrial DNA but enough to show that it differed significantly in its sequence of DNA units from that of modern humans. Mitochondrial DNA has now been extracted from a total of four Neanderthal fossils, situated in Germany, Russia and Croatia. All have DNA similar to each other and different from that of modern humans. Pääbo and colleagues have shown that Neanderthal mitochondrial DNA also differs from that of early modern humans, which weighs against the likelihood that Neanderthals made some mitochondrial genetic contribution to the modern human gene pool that has since been lost.115

  But mitochondrial DNA represents only a small fraction of the genome, so the possibility that some Neanderthal genes may have been incorporated elsewhere in the genome cannot at present be ruled out.116 Though a large scale intermingling of the two populations seems highly unlikely, modern humans may on occasion have enslaved and interbred with Neanderthal women. If so, Neanderthals, being adapted to the cold, would doubtless have had several useful genes to offer to modern humans and traces of these may yet be found even though the mitochondrial lineages have gone extinct.

  Krings and Pääbo estimate that the mitochondrial ancestress of humans and Neanderthals lived 465,000 years ago, give or take a couple of hundred thousand years either way. Genes usually split sometime before populations split, so this means Neanderthals split away from the hominid line sometime after 465,000 years ago. Their presumed predecessors, known as Homo heidelbergensis, are known in Europe from around 500,000 years ago, but it is not until 127,000 years ago that distinctive Neanderthal fossils appear.

  The Neanderthals’ home territory stretched from Spain in the west to points east of the Caspian sea. In the Near East it included the lands that are now Turkey, Iraq and Iran. Perhaps modern humans first entered Neanderthal territory directly from Africa. But if, as suggested above, there was only a single emigration, the one that reached India, then modern humans would h
ave arrived in Neanderthal territory by a route that led from northern India through Iran and Turkey. These invaders reached the Near East about 45,000 years ago and, according to the archaeological evidence, moved steadily across Europe.354

  As the moderns advanced, the Neanderthals became restricted to peripheral refuges such as the Italian and Iberian peninsulas. With one puzzling exception, the Châtelperronian culture of 40,000 years ago, the Neanderthals stuck to their unchanging Mousterian tool kit, never learning from the innovative technology of their successors. 117

  There is no way to know for certain the nature of the interaction between the two human species. It is unlikely to have been pleasant. Hunter-gatherer societies cannot support standing armies, so it is probably wrong to think of the modern human entry into Europe as a military campaign. It was more a slow infiltration. Given that Pleistocene Europe had no highway system, the new arrivals may well have traveled by boat, along the northern coast of the Mediterranean and up the rivers of central Europe.118 In winter, the frozen rivers would have made natural footpaths through the wilderness.

  FIGURE 5.2. THE ARRIVAL OF MODERN HUMANS IN EUROPE.

  Some of the African emigrants who reached India expanded to the northwest, through Iran and Turkey, eventually reaching Europe. Their slow-motion occupation of Europe took some 15,000 years, because of resistance from the indigenous Neanderthal population. Dots show sites occupied by Aurignacians, the name given by archaeologists to the culture of the first modern humans. Dates, in thousands of years before the present, are from radiocarbon measurements, and may be 3,000 years or so younger than calendar dates.

 

‹ Prev