Book Read Free

Before the Dawn: Recovering the Lost History of Our Ancestors

Page 29

by Nicholas Wade


  Whether or not that story is true, Genghis’s tomb remains secret and has defied two recent attempts, one by a Japanese expedition, one by Americans, to locate it. But while archaeologists were frustrated in their search for Genghis’s hoard, geneticists engaged on a quite different task stumbled across a more vital part of Genghis Khan’s legacy.

  A team led by Chris Tyler-Smith of Oxford University had analyzed the Y chromosomes of some 2,000 men from populations across the Eurasian land mass. They noticed that many of the chromosomes fell into a single cluster. Some chromosomes in the cluster were identical at each of 15 sites tested and others were just one mutational step removed from this master sequence. The striking feature of the cluster was that the owners of its Y chromosomes did not all come from a single population, as would have been expected, but from regions all over Eurasia.

  A clue to their origin was that the Y chromosome with the master sequence was particularly common in Inner Mongolia. A quarter of the men tested from this region carried the master sequence chromosome or its close derivatives. Another clue was that only 16 of the 50 or so Asian populations studied included men with the master sequence, yet all but one of these 16 live within what were the borders of the Mongol empire at the time of Genghis’s death. The one exception was the Hazara of Afghanistan and Pakistan, who are thought to be descendants of Mongol soldiers sent to garrison the region.

  Tyler-Smith and his colleagues believe the master sequence chromosome must be that of the Mongol royal house. It would have been carried by Genghis Khan and by the male relatives he sent to administer the regions of his far flung empire. Dating methods suggest the cluster started to form around 1,000 years ago, the time that Genghis’s dynasty began its ascent to power.291

  Mongol soldiers doubtless raped many women during their extraordinarily cruel and murderous campaigns. But there may be a more significant reason for the existence of so many men carrying the specific chromosome of the Mongol royal house: Genghis accumulated a large harem in which he seems to have labored with surprising industry. The fourteenth century Persian historian Rashid ad-Din, who served as chief minister of the Mongol government of Persia, wrote that Genghis Khan had nearly 500 wives and concubines, and that it was his practice to take women into his harem as booty whenever he conquered a new tribe.

  Another Persian historian of the Mongol empire, ’Ata-Malik Juvaini, includes without further explanation the following observation in his History of the World Conqueror, completed in AD 1260: “Of the issue of the race and lineage of Chingiz-Khan there are now living in the comfort of wealth and affluence more than 20,000. More than this I will not say but shall rather avoid [the subject] lest the readers of this history should accuse the writer of these lines of exaggeration and hyperbole and ask how from the loins of one man there could spring in so short a time so great a progeny.”292

  Genghis’s interest in procreation was shared by his sons, one of whom is credited with 40 sons. It seems to have been a deliberate policy of Genghis and his heirs to father as many children as possible. “It’s pretty clear what they were doing when they were not fighting,” comments a historian of the Mongol period, David Morgan of the University of Wisconsin.293

  From the proportion of Mongol royal house Y chromosomes in their sample, Tyler-Smith and his colleagues have been able to calculate just how well Genghis succeeded in his procreative program. An astonishing 8% of males throughout the former lands of the Mongol empire carry the Y chromosome of Genghis Khan. This amounts to a total of 16 million men, or about 0.5% of the world’s total.

  The second most common Y chromosome in East Asia, after that of Genghis Khan, is one that probably belongs to Giocangga, the patriarch of the Manchu rulers who governed China as the Qing dynasty from 1644 to 1912. The Qing imperial nobility consisted of male descendants of Giocangga and his grandson Nurhaci, who founded the dynasty. The nobility was highly privileged and its members were able to keep many concubines. In addition the Qing nobility used marriages to cement political alliances with other peoples of northern China such as the Mongols.

  Tyler-Smith has detected the Manchu chromosome in 7 northern populations though not in the Han, the major Chinese ethnic group. He believes the chromosome belongs to the Manchu royal house because of its frequency, its geographical distribution and the fact that its founder, according to genetic evidence from the chromosome itself, lived some 500 years ago— Giocangga died in 1582. Tyler-Smith estimates that the Manchu Y chromosome is carried by 1.6 million men living today.294

  A third patriarch, one with an estimated 2 to 3 million living descendants, has come to light through a study of Irish Y chromosomes. He may well be Niall of the Nine Hostages, an Irish high king of the fifth century A.D. whom some historians had regarded as a probably legendary figure.364

  The genome offers a unique new window into history, one that is especially illuminating when DNA evidence can be combined with historical evidence. The cases of Genghis, Giocangga, and Niall of the Nine Hostages raise the question of whether large-scale procreation isn’t just a perk of political power but may be a salient, even if unconscious, motivation for it.

  A History of Britain, from the Genome’s Viewpoint

  The genome often holds surprising answers for historical questions that involve lineages. Consider the matter of English surnames. Commoners acquired surnames between AD 1250 and 1350, apparently for the convenience of feudal record keepers who needed to differentiate between tenant farmers with the same first names. The surnames were not highly original. They tended to be a person’s profession (Smith, Butcher), or a patronymic (Johnson, Peterson), or derived from some landscape feature (Hill, Bush). Historians assumed that the same name had been invented many times over, so there would be no reason to assume that people with the same surname had a common ancestor in the thirteenth century. George Redmonds, however, a historian of British surnames and place names, came to feel that many English surnames had single progenitors. “But it was never possible to prove it genealogically because we don’t have enough evidence,” he says.295

  That began to change when Redmonds’s advice was sought by Bryan Sykes, a geneticist at Oxford University. Sykes had been invited to give a talk to scientists at Glaxo Wellcome, a large British drug company, which in the mid-1990’s was beginning to take an interest in the human genome. The organizers of the conference at which Sykes was to speak asked him several times if he was related to the company’s then chairman, Sir Richard Sykes. He kept saying no, not that he knew of. Even the company chauffeur who arrived to drive him to the conference asked the same question.

  Sykes was about to repeat his usual denial but suddenly a thought crossed his mind. “Maybe Sir Richard and I were related after all, but without realizing it,” he writes. “And, more to the point, maybe I could prove it by a genetic test.” Sykes asked the chauffeur to wait and rushed back to his lab for a genetic sampling kit (essentially a swab to brush cells off the inside of the cheek). At the conference, which his namesake was attending, he asked him for a sample.296

  The two men had grown up in quite different parts of the country. Bryan Sykes’s family lived in Hampshire, in southern England, Richard Sykes had grown up in Yorkshire, in the north. Apart from both having been trained as scientists, they seemingly had nothing else in common. But it turned out there was something else: they possessed the same Y chromosome.

  Y chromosomes, of course, are bequeathed from father to son just as are surnames. After the test with his namesake, Bryan Sykes wondered if other Sykeses too might be related to one another. Research showed that there were many Sykeses living in Yorkshire and that the surname itself was derived from a Yorkshire word, sike, meaning a moorland stream. Sykes picked some 250 of his namesakes at random from the Yorkshire area and sent each a letter asking for a sample of his DNA. About a quarter obliged, and from analysis of their cells a distinct pattern emerged. About a half carried the identical Y chromosome, or one that was just a single mutational step away from
it. The rest had a miscellany of unrelated Y chromosomes.

  Several interesting conclusions followed. First, there was just one real Sykes Y chromosome. All the men who carried it were presumably descended from the first bearer of the surname. That meant the surname had been assigned only once or, if more than once, all other lines had ended without male heirs and no longer existed.

  As for the 50% of Sykeses who did not carry the true Sykes Y chromosome, their cases must have been largely the result of what geneticists delicately refer to as a “nonpaternity event” at some point in their family tree, meaning the biological father was not the same as the father of record. Adoption is one possible explanation for nonpaternity, though it probably wouldn’t account for many cases.

  If half of Sykes men alive today have a nonpaternity event somewhere in their genealogy, doesn’t that raise considerable doubt about the virtue of Sykes wives through the ages? Bryan Sykes argues this is not the case. Assuming there have been 23 generations of Sykes since the first Mr. Sykes in the thirteenth century, an infidelity rate of merely 1.3% per generation would account for the fact that only half of contemporary Sykes men carry the correct Y chromosome. This compares very favorably with the nonpaternity rates of contemporary populations, Sykes comments, which run from 1.4% to 30%, though most fall in the 2 to 5% range.297

  “I’m proud to say I have the aboriginal chromosome,” Sykes replied when asked whether he was a true Sykes or one of the out-of-wedlock kind. His early ancestors seem to have been a rough lot; they appear regularly in court records of the fourteenth century as having incurred fines for cutting down trees or stealing sheep. “Nonetheless, their wives were faithful through all this,” Sykes says.298

  Redmonds, the local historian, has traced the earliest Sykeses to the villages of Flockton, Slaithwaite and Saddleworth in West Yorkshire. The first mention of the name is a court record of AD 1286 referring to a Henri del Sike of Flockton. There are still Sykeses living in Flockton. Redmonds was able to locate the plot of land of which Henri del Sike was tenant, a farm that straddled a stream between two parishes. He took his geneticist friend to visit. “There was no sign of the farmhouse which my ancestor, the very first Sykes, had occupied, but even so, it felt quite extraordinary to be here,” Sykes wrote. “Looking round at the old mill, the track and the stream, it seemed that nothing in the landscape had greatly changed. Nor had it. The field and croft boundaries were as they had been in the late thirteenth century when Henri del Sike was living here. As I stood, I could almost hear the voices of the children—my ancestors—laughing as they threw pebbles into the stream.”299

  Sykes has analyzed the Y chromosomes of three other English surnames and found that, as with his own, each can be traced to a single bearer. Because of his research it now seems that many English surnames once had a single bearer, and even the commonest ones like Clark and Smith may be descended from only a few originals.

  Genetic analysis is at the least a new tool for historians and may one day support a new kind of history, possibly somewhat at variance with the conventional kind. English schoolchildren are taught that their history really begins with the Roman invasion of 55 BC and Caesar’s defeat of the Celtic tribes who opposed him. The true bearers of the English heritage, the textbooks imply, are the Anglo-Saxons, later invaders whose Germanic language was the ancestor of English. The defeated Celtic inhabitants of Britain are assumed to have been pushed back into the hinterlands of Wales and Scotland and largely disappear from most history books.

  But a survey of British Y chromosomes shows that the Y chromosomes characteristic of Celtic speakers, far from having disappeared, are carried by a large proportion of the male population of Britain. Nowhere does the indigenous population seem to have been wiped out, either by the Anglo-Saxons who invaded from Denmark and northern Germany in the sixth and seventh centuries AD, or by the Danish and Norwegian Vikings who arrived in the ninth and tenth centuries.300 (Two other groups of invaders, the Romans and the Normans, probably arrived in numbers too small to have left a demographic mark.)

  The Y chromosomes common among Celts have a particular set of DNA markers known to geneticists as the Atlantic modal haplotype, or AMH. AMH Y chromosomes are also found, it so happens, in the Basque region of Spain, whose inhabitants are thought to represent the original inhabitants of Europe. AMH-type Y chromosomes are particularly common in places like Castlerea in central Ireland, which no invaders ever reached. This suggests that the chromosomes are the signature of the first hunter-gatherers who arrived in Britain and Ireland toward the end of the Pleistocene ice age 10,000 years ago.

  Given the similarity between Basque and Irish Y chromosomes, some geneticists suspect that people who had used Spain as a southern refuge during the Last Glacial Maximum started to move northward as the glaciers melted. Many may have traveled by boat up the west coast of Europe, entered the waterway between Ireland and England and settled on each side of it.301

  The carriers of the AMH Y chromosomes presumably spoke a language like Basque or some other tongue belonging to the first Paleolithic inhabitants of Europe. So it is a puzzle that the chromosome is now associated with Celtic, an Indo-European language that spread to Britain only in the first century BC, along with ironworking technology and agriculture. The solution is presumably that the Celtic way of life became widespread in Britain mostly by cultural transmission, not by a large invasion of Celts. The cultural shift evidently included the adoption of Celtic language by the original inhabitants of the British Isles.

  Another layer in this puzzle is that British mitochondrial DNA—the genetic element inherited solely through the female line—shows a different pattern from the Y chromosomes. The mitochondrial DNA generally resembles that of northern Europe. This suggests that the Celtic speakers in Britain obtained many of their wives from northern Europe, perhaps in exchange with European Celts, perhaps by pillage and rapine.302

  The historian Norman Davies opens his recent history of the British Isles by noting that the mitochondrial DNA recovered from bones buried some 8,000 years ago in a cave in the Cheddar Gorge matched that of a local schoolmaster, proving the continuity of the human population of the region. 303 The genome is already being welcomed by historians as a rich new source of unexpected information.

  The Origin of Icelanders

  England was invaded by Vikings from both Denmark and Norway. The influence of the Danish Vikings can be seen most strongly in Y chromosomes from York and Norfolk in the eastern regions that bore the brunt of the Danish invasions. The Norwegian Vikings operated to the north of the Danes. In the ninth century AD they captured the Orkney Islands to the northeast of Scotland and made them a base of operations. Norn, a form of old Norse, was spoken on the islands until the eighteenth century. Norwegian Vikings have left a strong genetic signature among Orcadians, as Orkney Islanders are known, but their traces can also be seen farther afield, particularly in Iceland.

  From their base in Orkney the Norwegian Vikings sailed around the northern coast of Scotland and down the waterway between Britain and Ireland, making settlements on both the British and Irish sides. In AD 870, the Vikings discovered Iceland, several days’ sail to the northwest of Scotland. Apart from some Irish hermits, who quickly left, the island was uninhabited. News of this virgin territory, with no hostile natives, soon got around, and for 60 years there was a steady stream of settlers. Immigration ceased in AD 930, perhaps because many of the trees had been chopped down, prompting an ecological crisis, and there was no more unclaimed farmland left. The island was then essentially closed to new immigration until modern times.

  Iceland’s genetic history has received much attention, both for its intrinsic interest as an isolated human population and because its population has become a leading source for discovering the genetic roots of common diseases ranging from cancer and heart disease to asthma and schizophrenia. These diseases are thought to result from several errant genes acting in combination. The errant genes are very hard to d
etect because each makes only a small contribution to the overall disease. For various reasons, including an excellent system of medical records, Iceland offers many advantages in searching for such genes. In 1996 Kari Stefansson, an American-trained Icelandic neurologist, put together a high powered genetic analysis company, DeCode Genetics, which has enjoyed considerable success in identifying disease genes in Icelanders and other populations. The company and its large pharmaceutical partners hope to develop diagnostic tests and drugs on the basis of the Icelandic findings. It is therefore of considerable interest to know if Icelanders are genetically similar enough to other populations, particularly those of the United States and Europe, for discoveries about their patterns of genetic disease to be relevant elsewhere in the world.

  Icelandic records from the twelfth and thirteenth centuries, notably documents known as the Book of Settlements and the Book of Icelanders, indicate that although Norse Vikings directed the immigration to Iceland, the inflow included people from the Norse settlements in the Orkneys and the coastal regions of Scotland, northern England and Ireland. Most of these Norse invaders, after the initial conquest, had intermarried with the local population. Assuming these Vikings brought their families, many if not most of the women in the founding Icelandic population would have been British or Irish, and in either case of Celtic origin. The Book of Settlements mentions only a small proportion of the founding settlers by name but of those whose ancestry is recorded, only 5% of the men came from the British Isles but 17% of the women. In addition, the Vikings captured slaves in raids in both countries, many of whom were probably women.

  Icelandic historians have developed the case that their country was probably founded by men who were mostly Norse and women who were mostly from the British Isles, especially Ireland. This claim of descent from two important peoples, the Vikings and the Celts, helped to differentiate the Icelanders of the nineteenth and twentieth centuries from their much-resented rulers, the Danes. “The result of this conflation is the dominant modern concept of Icelandic origins, one that fuses the nobility and heroism of the Norse with the literary and other cultural traditions of the Irish and other peoples of the ‘Celtic fringe,’” write a group of Icelandic and other experts.304

 

‹ Prev