Book Read Free

Essays. FSF Columns

Page 5

by Bruce Sterling


  It wasn’t long before the invention of the mailing-list, an ARPANET broadcasting technique in which an identical message could be sent automatically to large numbers of network subscribers. Interestingly, one of the first really big mailing-lists was “SF-LOVERS,” for science fiction fans. Discussing science fiction on the network was not work-related and was frowned upon by many ARPANET computer administrators, but this didn’t stop it from happening.

  Throughout the ’70s, ARPA’s network grew. Its decentralized structure made expansion easy. Unlike standard corporate computer networks, the ARPA network could accommodate many different kinds of machine. As long as individual machines could speak the packet-switching lingua franca of the new, anarchic network, their brand-names, and their content, and even their ownership, were irrelevant.

  The ARPA’s original standard for communication was known as NCP, “Network Control Protocol,” but as time passed and the technique advanced, NCP was superceded by a higher-level, more sophisticated standard known as TCP/IP. TCP, or “Transmission Control Protocol,” converts messages into streams of packets at the source, then reassembles them back into messages at the destination. IP, or “Internet Protocol,” handles the addressing, seeing to it that packets are routed across multiple nodes and even across multiple networks with multiple standards — not only ARPA’s pioneering NCP standard, but others like Ethernet, FDDI, and X.25.

  As early as 1977, TCP/IP was being used by other networks to link to ARPANET. ARPANET itself remained fairly tightly controlled, at least until 1983, when its military segment broke off and became MILNET. But TCP/IP linked them all. And ARPANET itself, though it was growing, became a smaller and smaller neighborhood amid the vastly growing galaxy of other linked machines.

  As the ’70s and ’80s advanced, many very different social groups found themselves in possession of powerful computers. It was fairly easy to link these computers to the growing network-of- networks. As the use of TCP/IP became more common, entire other networks fell into the digital embrace of the Internet, and messily adhered. Since the software called TCP/IP was public-domain, and the basic technology was decentralized and rather anarchic by its very nature, it was difficult to stop people from barging in and linking up somewhere-or-other. In point of fact, nobody wanted to stop them from joining this branching complex of networks, which came to be known as the “Internet.”

  Connecting to the Internet cost the taxpayer little or nothing, since each node was independent, and had to handle its own financing and its own technical requirements. The more, the merrier. Like the phone network, the computer network became steadily more valuable as it embraced larger and larger territories of people and resources.

  A fax machine is only valuable if everybody else has a fax machine. Until they do, a fax machine is just a curiosity. ARPANET, too, was a curiosity for a while. Then computer-networking became an utter necessity.

  In 1984 the National Science Foundation got into the act, through its Office of Advanced Scientific Computing. The new NSFNET set a blistering pace for technical advancement, linking newer, faster, shinier supercomputers, through thicker, faster links, upgraded and expanded, again and again, in 1986, 1988, 1990. And other government agencies leapt in: NASA, the National Institutes of Health, the Department of Energy, each of them maintaining a digital satrapy in the Internet confederation.

  The nodes in this growing network-of-networks were divvied up into basic varieties. Foreign computers, and a few American ones, chose to be denoted by their geographical locations. The others were grouped by the six basic Internet “domains”: gov, mil, edu, com, org and net. (Graceless abbreviations such as this are a standard feature of the TCP/IP protocols.) Gov, Mil, and Edu denoted governmental, military and educational institutions, which were, of course, the pioneers, since ARPANET had begun as a high-tech research exercise in national security. Com, however, stood for “commercial” institutions, which were soon bursting into the network like rodeo bulls, surrounded by a dust-cloud of eager nonprofit “orgs.” (The “net” computers served as gateways between networks.)

  ARPANET itself formally expired in 1989, a happy victim of its own overwhelming success. Its users scarcely noticed, for ARPANET’s functions not only continued but steadily improved. The use of TCP/IP standards for computer networking is now global. In 1971, a mere twenty-one years ago, there were only four nodes in the ARPANET network. Today there are tens of thousands of nodes in the Internet, scattered over forty-two countries, with more coming on-line every day. Three million, possibly four million people use this gigantic mother-of-all-computer-networks.

  The Internet is especially popular among scientists, and is probably the most important scientific instrument of the late twentieth century. The powerful, sophisticated access that it provides to specialized data and personal communication has sped up the pace of scientific research enormously.

  The Internet’s pace of growth in the early 1990s is spectacular, almost ferocious. It is spreading faster than cellular phones, faster than fax machines. Last year the Internet was growing at a rate of twenty percent a month. The number of “host” machines with direct connection to TCP/IP has been doubling every year since 1988. The Internet is moving out of its original base in military and research institutions, into elementary and high schools, as well as into public libraries and the commercial sector.

  Why do people want to be “on the Internet?” One of the main reasons is simple freedom. The Internet is a rare example of a true, modern, functional anarchy. There is no “Internet Inc.” There are no official censors, no bosses, no board of directors, no stockholders. In principle, any node can speak as a peer to any other node, as long as it obeys the rules of the TCP/IP protocols, which are strictly technical, not social or political. (There has been some struggle over commercial use of the Internet, but that situation is changing as businesses supply their own links).

  The Internet is also a bargain. The Internet as a whole, unlike the phone system, doesn’t charge for long-distance service. And unlike most commercial computer networks, it doesn’t charge for access time, either. In fact the “Internet” itself, which doesn’t even officially exist as an entity, never “charges” for anything. Each group of people accessing the Internet is responsible for their own machine and their own section of line.

  The Internet’s “anarchy” may seem strange or even unnatural, but it makes a certain deep and basic sense. It’s rather like the “anarchy” of the English language. Nobody rents English, and nobody owns English. As an English-speaking person, it’s up to you to learn how to speak English properly and make whatever use you please of it (though the government provides certain subsidies to help you learn to read and write a bit). Otherwise, everybody just sort of pitches in, and somehow the thing evolves on its own, and somehow turns out workable. And interesting. Fascinating, even. Though a lot of people earn their living from using and exploiting and teaching English, “English” as an institution is public property, a public good. Much the same goes for the Internet. Would English be improved if the “The English Language, Inc.” had a board of directors and a chief executive officer, or a President and a Congress? There’d probably be a lot fewer new words in English, and a lot fewer new ideas.

  People on the Internet feel much the same way about their own institution. It’s an institution that resists institutionalization. The Internet belongs to everyone and no one.

  Still, its various interest groups all have a claim. Business people want the Internet put on a sounder financial footing. Government people want the Internet more fully regulated. Academics want it dedicated exclusively to scholarly research. Military people want it spy-proof and secure. And so on and so on.

  All these sources of conflict remain in a stumbling balance today, and the Internet, so far, remains in a thrivingly anarchical condition. Once upon a time, the NSFnet’s high-speed, high-capacity lines were known as the “Internet Backbone,” and their owners could rather lord it over the rest of the
Internet; but today there are “backbones” in Canada, Japan, and Europe, and even privately owned commercial Internet backbones specially created for carrying business traffic. Today, even privately owned desktop computers can become Internet nodes. You can carry one under your arm. Soon, perhaps, on your wrist.

  But what does one do with the Internet? Four things, basically: mail, discussion groups, long-distance computing, and file transfers.

  Internet mail is “e-mail,” electronic mail, faster by several orders of magnitude than the US Mail, which is scornfully known by Internet regulars as “snailmail.” Internet mail is somewhat like fax. It’s electronic text. But you don’t have to pay for it (at least not directly), and it’s global in scope. E-mail can also send software and certain forms of compressed digital imagery. New forms of mail are in the works.

  The discussion groups, or “newsgroups,” are a world of their own. This world of news, debate and argument is generally known as “USENET. ” USENET is, in point of fact, quite different from the Internet. USENET is rather like an enormous billowing crowd of gossipy, news-hungry people, wandering in and through the Internet on their way to various private backyard barbecues. USENET is not so much a physical network as a set of social conventions. In any case, at the moment there are some 2,500 separate newsgroups on USENET, and their discussions generate about 7 million words of typed commentary every single day. Naturally there is a vast amount of talk about computers on USENET, but the variety of subjects discussed is enormous, and it’s growing larger all the time. USENET also distributes various free electronic journals and publications.

  Both netnews and e-mail are very widely available, even outside the high-speed core of the Internet itself. News and e-mail are easily available over common phone-lines, from Internet fringe-realms like BITnet, UUCP and Fidonet. The last two Internet services, long-distance computing and file transfer, require what is known as “direct Internet access” — using TCP/IP.

  Long-distance computing was an original inspiration for ARPANET and is still a very useful service, at least for some. Programmers can maintain accounts on distant, powerful computers, run programs there or write their own. Scientists can make use of powerful supercomputers a continent away. Libraries offer their electronic card catalogs for free search. Enormous CD-ROM catalogs are increasingly available through this service. And there are fantastic amounts of free software available.

  File transfers allow Internet users to access remote machines and retrieve programs or text. Many Internet computers — some two thousand of them, so far — allow any person to access them anonymously, and to simply copy their public files, free of charge. This is no small deal, since entire books can be transferred through direct Internet access in a matter of minutes. Today, in 1992, there are over a million such public files available to anyone who asks for them (and many more millions of files are available to people with accounts). Internet file-transfers are becoming a new form of publishing, in which the reader simply electronically copies the work on demand, in any quantity he or she wants, for free. New Internet programs, such as “archie,” “gopher,” and “WAIS,” have been developed to catalog and explore these enormous archives of material.

  The headless, anarchic, million-limbed Internet is spreading like bread-mold. Any computer of sufficient power is a potential spore for the Internet, and today such computers sell for less than $2,000 and are in the hands of people all over the world. ARPA’s network, designed to assure control of a ravaged society after a nuclear holocaust, has been superceded by its mutant child the Internet, which is thoroughly out of control, and spreading exponentially through the post-Cold War electronic global village. The spread of the Internet in the 90s resembles the spread of personal computing in the 1970s, though it is even faster and perhaps more important. More important, perhaps, because it may give those personal computers a means of cheap, easy storage and access that is truly planetary in scale.

  The future of the Internet bids fair to be bigger and exponentially faster. Commercialization of the Internet is a very hot topic today, with every manner of wild new commercial information-service promised. The federal government, pleased with an unsought success, is also still very much in the act. NREN, the National Research and Education Network, was approved by the US Congress in fall 1991, as a five-year, $2 billion project to upgrade the Internet “backbone.” NREN will be some fifty times faster than the fastest network available today, allowing the electronic transfer of the entire Encyclopedia Britannica in one hot second. Computer networks worldwide will feature 3-D animated graphics, radio and cellular phone-links to portable computers, as well as fax, voice, and high-definition television. A multimedia global circus!

  Or so it’s hoped — and planned. The real Internet of the future may bear very little resemblance to today’s plans. Planning has never seemed to have much to do with the seething, fungal development of the Internet. After all, today’s Internet bears little resemblance to those original grim plans for RAND’s post-holocaust command grid. It’s a fine and happy irony.

  How does one get access to the Internet? Well — if you don’t have a computer and a modem, get one. Your computer can act as a terminal, and you can use an ordinary telephone line to connect to an Internet-linked machine. These slower and simpler adjuncts to the Internet can provide you with the netnews discussion groups and your own e-mail address. These are services worth having — though if you only have mail and news, you’re not actually “on the Internet” proper.

  If you’re on a campus, your university may have direct “dedicated access” to high-speed Internet TCP/IP lines. Apply for an Internet account on a dedicated campus machine, and you may be able to get those hot-dog long-distance computing and file-transfer functions. Some cities, such as Cleveland, supply “freenet” community access. Businesses increasingly have Internet access, and are willing to sell it to subscribers. The standard fee is about $40 a month — about the same as TV cable service.

  As the Nineties proceed, finding a link to the Internet will become much cheaper and easier. Its ease of use will also improve, which is fine news, for the savage UNIX interface of TCP/IP leaves plenty of room for advancements in user-friendliness. Learning the Internet now, or at least learning about it, is wise. By the turn of the century, “network literacy,” like “computer literacy” before it, will be forcing itself into the very texture of your life.

  For Further Reading:

  The Whole Internet Catalog & User’s Guide by Ed Krol. (1992) O’Reilly and Associates, Inc. A clear, non-jargonized introduction to the intimidating business of network literacy. Many computer-documentation manuals attempt to be funny. Mr. Krol’s book is actually funny.

  The Matrix: Computer Networks and Conferencing Systems Worldwide. by John Quarterman. Digital Press: Bedford, MA. (1990) Massive and highly technical compendium detailing the mind-boggling scope and complexity of our newly networked planet.

  The Internet Companion by Tracy LaQuey with Jeanne C. Ryer (1992) Addison Wesley. Evangelical etiquette guide to the Internet featuring anecdotal tales of life-changing Internet experiences. Foreword by Senator Al Gore.

  Zen and the Art of the Internet: A Beginner’s Guide by Brendan P. Kehoe (1992) Prentice Hall. Brief but useful Internet guide with plenty of good advice on useful machines to paw over for data. Mr Kehoe’s guide bears the singularly wonderful distinction of being available in electronic form free of charge. I’m doing the same with all my F&SF Science articles, including, of course, this one. My own Internet address is bruces@well.sf.ca.us.

  “Magnetic Vision”

  Here on my desk I have something that can only be described as

  miraculous. It’s a big cardboard envelope with nine thick sheets of

  black plastic inside, and on these sheets are pictures of my own brain.

  These images are “MRI scans” — magnetic resonance imagery from

  a medical scanner.

  These are magnetic windows into the lightle
ss realm inside my

  skull. The meat, bone, and various gristles within my head glow gently

  in crisp black-and-white detail. There’s little of the foggy ghostliness

  one sees with, say, dental x-rays. Held up against a bright light, or

  placed on a diagnostic light table, the dark plastic sheets reveal veins,

  arteries, various odd fluid-stuffed ventricles, and the spongey wrinkles

  of my cerebellum. In various shots, I can see the pulp within my own

  teeth, the roots of my tongue, the boney caverns of my sinuses, and the

  nicely spherical jellies that are my two eyeballs. I can see that the

  human brain really does come in two lobes and in three sections, and

  that it has gray matter and white matter. The brain is a big whopping

  gland, basically, and it fills my skull just like the meat of a walnut.

  It’s an odd experience to look long and hard at one’s own brain.

  Though it’s quite a privilege to witness this, it’s also a form of

  narcissism without much historical parallel. Frankly, I don’t think I

  ever really believed in my own brain until I saw these images. At least,

  I never truly comprehended my brain as a tangible physical organ, like

  a knuckle or a kneecap. And yet here is the evidence, laid out

  irrefutably before me, pixel by monochrome pixel, in a large variety of

  angles and in exquisite detail. And I’m told that my brain is quite

  healthy and perfectly normal — anatomically at least. (For a science

  fiction writer this news is something of a letdown.)

  The discovery of X-rays in 1895, by Wilhelm Roentgen, led to the

  first technology that made human flesh transparent. Nowadays, X-rays

  can pierce the body through many different angles to produce a

 

‹ Prev