Making Eden

Home > Other > Making Eden > Page 37
Making Eden Page 37

by David Beerling


  Figure 19 (a) Courtesy of Kris Pirozynski. (b) Courtesy of David Malloch.

  Figure 20 David Beerling.

  Figure 21 Leake, J.R., Cameron, D.D. & Beerling, D.J., ‘Fungal fidelity in the myco-heterotroph-to-autotroph life cycle of Lycopodiaceae: a case of parental nurture’, New Phytologist, 177, 572–576. Copyright © 2008, John Wiley and Sons.

  Figure 22 Martin, F., Uroz, S. & Barker, D.G., ‘Ancestral alliances: plant mutualistic symbioses with fungi and bacteria’, Science, 356. Copyright © 2017, American Association for the Advancement of Science.

  Figure 23 Courtesy New York State Museum, Albany, NY, USA.

  Figure 24 Redrawn from Springer Nature: Nature Communications, G.L., Royer, D.L. & Lunt, D.J., ‘Future climate forcing potential y without precedent in the last 420

  million years,’ doi:10.1038/ncomms14845. © 2017. Published by Springer Nature

  under the terms of the Creative Commons Attribution 4.0 International license.

  (https://creativecommons.org/licenses/by/4.0/).

  Figure 25 Wellcome Collection. Reproduced under the terms of the Creative Commons At ribution 4.0 International license (ht ps://creativecommons.org/licenses/by/4.0/).

  Figure 26 Reproduced with permission by Springer Nature: Nature, ‘Biodiversity hotspots for conservation priorities’, Myers, N. et al. Copyright © 2000, Springer Nature.

  Figure 27 Courtesy of Peter H. Raven.

  PLATE CREDI TS

  Plate 1

  De Vries, J, & Archibald, J.M., ‘Plant evolution: landmarks on the path to terrestrial life’, New Phytologist, 217, 1428–1434, Wiley. © 2018 The Authors. New Phytologist

  © 2018 New Phytologist Trust.

  Plate 2 Delwiche, C.F. & Cooper, E.D., The evolutionary origin of a land flora. Current Biology, 25, R899–R910. © 2015 Elsevier Inc.

  Plate 3 Delwiche, C.F. & Timme, R.E., Plants. Current Biology, 21, R417–R422. © 2011

  Elsevier Inc.

  Plate 4 Reprinted by permission from Springer Nature : Nature Plants, ‘Newton and the ascent of water in plants,’ Beerling, D.J. © 2015 Macmil an Publishers Limited,

  part of Springer Nature. All rights reserved.

  Plate 5 Reprinted by permission from Springer Nature: Nature, Nature Plants, 2, ‘Origin and function of stomata in the moss Physcomitrel a patens’, Chater, C.C. et al.

  © 2016.

  Plate 6 Remy, W. et al., ‘Four hundred-million-year-old vesicular arbuscular mycorrhizae’, Proceedings of the National Academy of Sciences, USA, 91, 11841–11843.

  © 1994, National Academy of Sciences, U.S.A. Courtesy of Hans Kerp (Münster,

  Germany).

  Plate 7 David Beerling.

  Plate 8 © 2012 Victor O. Leshyk.

  Plate 9 David Beerling.

  Plate 10 (a) David Beerling. (b) Morris, J.L. et al., Investigating Devonian trees as geo-engineers of past climates: linking palaeosols to palaeobotany and experimental

  geobiology. Palaeontology, 58, 787–801. © 2015 The Authors. Palaeontology published by John Wiley & Sons Ltd on behalf of The Palaeontological Association.

  Published by John Wiley & Sons, Inc. under the terms of the Creative Commons

  Attribution 4.0 International license. (https://creativecommonsorg/licenses/

  by/4.0/).

  Timescale: Cohen, K.M., Finney, S., and Gibbard, P.L., 2012, International Chronostrati-graphic Chart: International Commission on Stratigraphy, http:// www.stratigraphy.

  org (last accessed May 2012). (Chart reproduced for the 34th International Geological Congress, Brisbane, Australia, 5–10 August 2012.)

  Gradstein, F.M, Ogg, J.G., Schmitz, M.D., et al., 2012, The Geologic Time Scale

  2012: Boston, USA, Elsevier, DOI: 10.1016/B978-0-444-59425-9.00004-4.

  PUBLISHER’ S ACKNOWLEDGEMEN TS

  We are grateful for permission to include the following copyright material in this book.

  Extract from Lone Frank, My Beautiful Genome, OneWorld Publications, 2011.

  © 2010, Lone Frank. Reproduced with permission of the Licensor through PLSclear.

  Extract from Winifred Goldring, ‘The Oldest Known Petrified Forest’, The

  Scientific Monthly, Vol. 24, No. 6 (Jun., 1927), pp. 514–29.

  Extract republished with permission of Hachette Books Group, from Symbiotic

  Planet: A New Look at Evolution, Lynn Margulis, 1998; permission conveyed through Copyright Clearance Center, Inc.

  Extract from Lord of the Rings: The Return of the King, reprinted by permission of HarperCollins Publishers Ltd. © 1955 J.R.R. Tolkien

  Extract reprinted from Current Biology, Vol. 23, Issue 21, Keiko Torii, ‘Q & A with Keiko U. Torii’, R943–4. © 2013, with permission from Elsevier.

  Extract reprinted by permission from Springer Nature, Nature, Multiple personal genomes await, J. Craig Venter, 2010. © 2018 Macmillan Publishers Limited, part

  of Springer Nature. All rights reserved.

  The publisher and author have made every effort to trace and contact all copy-

  right holders before publication. If notified, the publisher will be pleased to rectify any errors or omissions at the earliest opportunity.

  I NDE X

  ABC genetic model of floral evolution 58–9, 59 f

  Antheridium, mosses 34 f, 35

  Abscisic acid (ABA) 112–14

  Anthoceros agrestis, genome sequencing 50

  Acidification 161

  Anthropocene period 174

  ocean acidification 170

  Apatite 162

  soil 154

  Apiaceae (parsley), insect control and 61

  Adder’s tongue (Ophioglossum) 138

  Apotreubia 25

  Aegithloa cautdatus (long-tailed tit) 140–1

  Arabidopsis

  sustainable agriculture 190

  ARP gene deletion studies 74–5

  Aglaophyton majus 126

  genome 44, 48, 56

  Agriculture 172–3

  root hairs 78–9

  carbon sequestration 169–70

  Arbuscles 126

  control of 190

  ARBUSCULAR mycorrhizal fungi

  improvement by genetics 191

  distribution of 128

  sustainable agriculture 189–91

  fossil record 126–8

  Algae

  see also mycorrhizal fungi

  brown seaweed 21

  Archaeopteris 78, 156

  cyanobacterium symbiosis 17, 19 f

  ARCHEGONIUM, mosses 35

  flagella 46

  ARP gene 73–4

  freshwater algae 20, 22, 48

  Asia 190

  multicellular algae in Triassic 46–7

  Asteraceae, genome duplication 60

  red algae see Rhodophytes (red algae)

  Asteroxylon mackei 125 f, 126

  see also green algae

  root evolution 76–7, 77 f

  Algeria 164 b

  Atmospheric carbon dioxide 166–8

  Allen Hills (Antarctica) 19

  climate change 167–8

  Alps 179

  decreases in 167

  Alternation of generations 84

  forest-driven weathering 167

  Amazonian biodiversity 178 b

  level detection in fossil record 156

  Amis, Kingsley 195

  reduction of 117

  Andes 167

  rise of 120–1, 165–6, 180

  Aneura mirabilis (ghostwort) 143

  sequestration 154

  Angiosperms (flowering plants) 30, 37–8

  Atmospheric chemistry 11

  ABC genetic model of floral evolution

  Auxin 86–7

  58–9, 59 f

  meristems 73

  diversification 38

  domination of 116–17

  Bacteria

  evolution of 59–60

  fungal gene transfer 50

  gametophytes 37

  photosyn
thetic bacteria 17

  genome doubling 57, 58 f, 60

  Balkans 179

  lignin 53–4

  Ballard, J G 2, 10, 196–7

  origins 57, 58 f

  Bangia 16

  relative species richness 31 f

  Bangiomorpha pubescens 16

  Animals, inferiority to plants 5–6 b

  Bangladesh 192

  248 a Inde x

  Banks, Joseph 9, 105 b

  fossil record 158–9

  Baragwanathia 28

  root traces 158

  Bardet–Biedl syndrome 46

  sedimentary analysis 157

  Barley (Hordeum vulgare) 60–1

  Calcium carbonate 154

  Basalt, chemical weathering by trees 153

  Californian coastal redwood (Sequoia

  Becker, Burkhard 21

  sempervirens) 97

  Bergmann, Dominique 106

  Californian Floristic Province (CFP) 185–6

  Bernard, Nöel 142–3

  Cambrian explosion 67, 69

  Berner, Robert 152–4, 156, 159–2

  Cambrian period

  Berry, Chris 151–2, 162

  middle Cambrian 26

  Berry, Joe 103, 116–17

  vertebrate evolution 63

  The Bible 5

  Canada 193

  Bidartondo, Martin 132–4

  Candide (Voltaire) 102–3

  Biochemical cycles, symbiosis 159–62

  Cap and trade schemes 193

  Biodiversity

  Cape Province (South Africa) 186–7

  Amazonian biodiversity 178 b

  CarbFix experiment 168

  ecosystems and 187–8

  Carbon capture

  ethical obligations 187

  crop production 169

  moral imperative 187

  sequestration technology 169

  pattern preservation 186–7

  Carbon dioxide

  Bioenergy crops 169

  atmosphere see atmospheric carbon dioxide

  Biosphere, recovery time from extinction 184

  perception of 119–20

  Black cottonwood (Populus trichocarpa) 55

  power stations 168

  Black pine (Pinus nigra) 66–7

  Carbon dioxide Response Secreted Protease

  Black truffle (Tuber melanosporum) 129 b

  (CRSP) 120

  Borlaug, Norman 90

  Carbonic anhydrase 119–20

  Botanical gardens 66–7, 68 f

  Carboniferous period

  Botany: a blooming history (BBC) 94

  clay minerals 159

  Botrychium (moonworts) 138–9

  forests 70

  Bower, Frederick 8–9, 76

  plant type and size 155

  Brachypodium, MUTE gene 110–11

  symbiosis evolution 146, 162

  Brassicaceae

  vascular tissue evolution 52

  genome duplication 60

  Carex 70

  insect control and 61

  Carpathian mountains 179

  Brown seaweed 21

  Cell division molecular pathways 106–7

  Bryophytes 24–5

  Cellular co-operation 46–7

  flagella 46

  Cenozoic period 38

  genome sequencing 50–1

  The Centaur (Updike) 116

  life cycles 33–4

  Ceratopteris, reproduction 84

  relative species richness 31 f

  Ceres 3

  tree of life 44 see also hornworts; liverworts

  CFP (Californian Floristic Province) 185–6

  (Marchantiophyta); mosses

  Chara braunii, genome 48

  Burgundy (summer) truffle (Tuber aestivum) 129 b

  Charales (stoneworts) 22–3

  Charophytes 16, 22, 24

  C photosynthesis

  ethylene receptor genes 88

  4 genetics 45–6

  evolution of 20–1

  grasses 39

  freshwater colonization 20–1

  origin of 60

  genome sequencing 49

  Cabbage trees (Melanodendron) 54

  relative species richness 31 f

  Cacti 39–40

  transcriptome 49–50

  DNA sequencing 39

  tree of life 44 see also green algae

  Cairo (Green County, New York) 156–9

  Chater, Caspar 108–9

  clay minerals 159

  Chemical messengers 85–6

  Inde x a 249

  China 173

  Costa Rica 181

  phosphorus 164 b

  Creationism 8

  Chlamydomonas 53

  Cretaceous period 30–1

  genome 46–7

  flowering plant evolution 59–60

  Chlorophytes (Chlorophyta) 16, 19–20

  mass extinction 20 see also end-Cretaceous

  ethylene receptor genes 88

  mass extinction

  evolution of 20–1

  symbiosis evolution 146–7

  land colonization failure 21

  Crichton, Michael 7, 29

  relative species richness 31 f

  CRSP (Carbon dioxide Response Secreted

  tree of life 44 see also green algae

  Protease) 120

  Chloroplasts 17

  CRSP gene 120

  origins 18 b

  Cryogenian period 21

  Christopher, John 2, 4

  Cryptobiotic crusts 14–5

  Church, Arthur C 21

  Cuticle 96

  Ciechanover, Aaron 89

  Cyanobacteria 15

  Cilia 46

  algae symbiosis 18, 19 f

  Cladoxylopsids 151–2

  Cycads 29, 30

  Clapham, Roy 80 b

  Cyperaceae (sedge) 70

  Clay minerals 159

  Climate change 118–19, 150–71

  Darlington, Cyril 80 b

  atmospheric carbon dioxide 167

  Darwin, Charles 7–8, 15, 54, 86, 92, 141–3

  carbon sequestration 154

  Darwin, Erasmus 105 b

  deforestation and 173–4

  Darwin, Francis 86

  Devonian period 152–4, 162–3

  Darwin’s Blind Spot (Ryan) 128

  Europe 179–80

  Darwin’s Island (Jones) 43–4

  species extinction 179, 185

  Date–plum tree (Diospyros lotus) 80 b

  surface warming 119 f

  Dawkins, Richard 12

  temperature increases 193

  The Death of Grass (Christopher) 2, 4

  volcanoes 165–7, 166 f

  de Bary, Anton 138

  Climate envelope 179

  Deccan Traps (India) 64

  CLF gene 85

  Deforestation, climate effects 117–18, 173–4

  Clubmosses (Lycopodiopsida) 28

  DELLAs 89–90

  genome sequencing 51–2

  dePamphilis, Claude 57

  Coal deposits 52

  Deserts 39–40

  Coal mining 193

  mosses 15

  Coen, Enrico 58–9

  Desiccation 95

  Cohesion–tension theory 98

  tolerance of bryophytes 24

  Coleochaetales 22, 23

  Determinate growth, leaves 73–4

  Coleochaete 23

  Devonian ‘big bang’ 91

  reproduction of 32

  Devonian period 28–9

  transcriptomes 49

  clay minerals 159

  Commidendrum (gumwood) 54

  climate change 152–4

  Common oak (Quercus rober), genome

  climate engineering 163

  sequencing 91–2

  land colonization by plants 67, 71

  Comparative genomics 44

  land organic material 101 b

  Conifers 29

 
; land plant spread 155

  life cycle 36

  oxygenation 101 b

  Conover, Emily 98

  stomata evolution 112

  Conrad, Joseph 1

  symbiosis evolution 146, 162

  Constanza, Robert 187

  tree ferns 152

  Cooksonia

  Devonian Plant Hypothesis 150–6

  fossil record 85

  support for 158–9

  stomata 96–7, 97 f

  de Vries, Hugo 56

  250 a Inde x

  Dietary changes 191–2

  EPF2 peptide 120

  Dinosaurs, cycad-eating 30

  EPF gene 111–12

  Diospyros lotus (date–plum tree) 80 b

  Epigenetics 85

  Diversification of plants 6

  Equisetum (horsetails) 28

  Diversity of life 16

  Escape pathway of mosses 88

  Diversity of plants 12

  Ethical obligations to biodiversity 187

  green algae 15

  Ethylene 88

  Dixon, Henry H 98

  Eucalyptus grandis 55

  DNA 42–43

  Eudicots 30

  DNA fingerprinting 132–4

  Europe 179–80

  DNA repeats 43

  Evo-devo 69

  DNA sequencing

  Evolutionary history 186

  cacti 40

  Evolutionary relationship of plants 9

  land plant origins 23

  Evolution by Gene Duplication (Ohno) 62–3

  Dobzhansky, Theodosius 186

  Extinction 172–97

  Dolan, Liam 78, 80 b, 81–3

  action lack 184–5

  Donoghue, Philip 26–7

  climate change 179, 185

  Dormancy, seeds 182

  estimation 177 f

  Dosage compensation 63

  figures for 183

  The Drought (Ballard) 2, 196

  land competition 176

  The Drowned World (Ballard) 196

  lessons for 182–4

  Drugs 195

  past vs. present 183

  Duckett, Jeff 134

  rates of 182

  Dumb-bell shaped stomata 110

  risk of 174

  timescale 181–2

  Eastern Europe 190

  Extinction debt 181

  Echinchloa polystachya 39

  Extinction: the causes and consequences of the

  Ecological footprint 188–9

  disappearance of species (Ehrlich & Ehrlich) 188

  Ecosystems

  atmospheric carbon dioxide rise 180

  Fabaceae 60, 146

  biodiversity and 187–8

  FAMA gene 106–11, 107 f

  services worldwide value 187

  Fern-like plants, evolution of 28

  Ectomycorrhizal fungi

  Ferns (pteridophytes) 28

  evolution 145

  flagella 46

  genome sequencing 146

  leaf evolution 71

 

‹ Prev