Book Read Free

Some Remarks: Essays and Other Writing

Page 32

by Neal Stephenson


  6. Manned space exploration as propaganda competition, unmoored from realistic cost/benefit discipline.

  The above circumstances provide a remarkable example of path dependency. Had these contingencies not obtained, rockets with orbital capability would not have been developed so soon, and when modern societies became interested in launching things into space they might have looked for completely different ways of doing so.

  Before dismissing the above story as it as an aberration, consider that the modern petroleum industry is a direct outgrowth of the practice of going out in wooden, wind-driven ships to hunt sperm whales with hand-hurled spears and then boiling their heads to make lamp fuel.

  We move now to the phenomenon of lock-in.

  Space travel has not proved nearly as useful to the human race as boys of my generation were once led to believe, but it does have one application—unmanned satellites—that is extremely lucrative to the civilian economy and of the highest imaginable importance to the military and intelligence worlds.

  It is illuminating here, though utterly conjectural, to imagine a dialog, set in the offices of a large telecommunications firm during the 1960s, between a business development executive and an engineer.

  BIZ DEV GUY: WE COULD MAKE A PREPOSTEROUS AMOUNT OF MONEY FROM communications satellites.

  Engineer: It will be expensive to build those, but even so, nothing compared to the cost of building the machines needed to launch them into orbit.

  Biz dev guy: Funny you should mention that. It so happens that our government has already put $4 trillion into building the rockets and supporting technology we need. There’s only one catch.

  Engineer: Okay, I’ll bite. What is the catch?

  Biz dev guy: Your communications satellite has to be the size, shape, and weight of a hydrogen bomb.

  AS SATELLITES BECAME IMPORTANT, THE EARLY H-BOMB-HURLING ROCKETS were modified to the point where they became unrecognizable. A quick scan of the Wikipedia entry for the Titan rocket family tells the story in pictures: this machine started out in the late 1950s as an ICBM but, as the military and economic importance of launching satellites became obvious, underwent a lengthy series of modifications, evolving beyond recognition. Similar stories can be told about the Atlas and Thor-Delta families and some of their Soviet counterparts. Since H-bomb-hurlers, even heavily upgraded ones, were not big enough to launch large manned space vehicles such as Apollo, entirely new rocket families such as the Saturn were developed. So it would be erroneous to suggest that more recent satellite designers have been limited by the H-bomb form factor in the way that they might have been at the dawn of the Space Age.

  That is not, however, the most important way that rockets generate lock-in. In order to understand this it’s necessary to know a few things about (1) the physical environment of rocket launches, (2) the economics of the industry, and (3) the way it is regulated; or, to be more precise, the way it interacts with government.

  1. The designer of a rocket payload, such as a communications satellite, has much more to worry about than merely limiting the payload to a given size, shape, and weight. The payload must be designed to survive the launch and the transition through various atmospheric regimes into outer space. As we all know from watching astronauts on movies and TV, there will be acceleration forces, relatively modest at the beginning, but building to much higher values as fuel is burned and the rocket becomes lighter relative to its thrust. At some moments, during stage separation, the acceleration may even reverse direction for a few moments as one set of engines stops supplying thrust and atmospheric resistance slows the vehicle down. Rockets produce intense vibration over a wide range of frequencies; at the upper end of that range we would identify this as noise (noise loud enough to cause physical destruction of delicate objects), at the lower range, violent shaking. Explosive bolts send violent shocks through the vehicle’s structure. During the passage through the ionosphere, the air itself becomes conductive and can short out electrical gear. Enclosed spaces must be vented so that pressure doesn’t build up in them as the vehicle passes into vacuum. Once the satellite has reached orbit, sharp and intense variations in temperature as it passes in and out of the earth’s shadow can cause problems if not anticipated in the engineering design. Some of these hazards are common to all things that go into space, but many are unique to rockets.

  2. If satellites and launches were cheap, a more easygoing attitude toward their design and construction might prevail. But in general they are, pound for pound, among the most expensive objects ever made even before millions of dollars are spent launching them into orbit. Relatively mass-produced satellites, such as those in the Iridium and Orbcomm constellations, cost on the order of $10,000/lb. The communications birds in geostationary orbit—the ones used for satellite television, e.g.—are two to five times as expensive, and ambitious scientific/defense payloads are often $100,000 per pound. Comsats can only be packed so close together in orbit, which means that there is a limited number of available slots—this makes their owners want to pack as much capability as possible into each bird, helping jack up the cost. Once they are up in orbit, comsats generate huge amounts of cash for their owners, which means that any delays in launching them are terribly expensive. Rockets of the old school aren’t perfect—they have their share of failures—but they have enough of a track record that it’s possible to buy launch insurance. The importance of this fact cannot be overestimated. Every space entrepeneur who dreams of constructing a better mousetrap sooner or later crunches into the sickening realization that, even if the new invention achieved perfect technical success, it would fail as a business proposition simply because the customers wouldn’t be able to purchase launch insurance.

  3. Rockets—at least, the kinds that are destined for orbit, which is what we are talking about here—don’t go straight up into the air. They mostly go horizontally, since their purpose is to generate horizontal velocities so high that centrifugal force counteracts gravity. The initial launch is vertical because the thing needs to get off the pad and out of the dense lower atmosphere, but shortly afterwards it bends its trajectory sharply downrange and begins to accelerate nearly horizontally. Consequently, all rockets destined for orbit will pass over large swathes of the earth’s surface during the ten minutes or so that their engines are burning. This produces regulatory and legal complications that go deep into the realm of the absurd. Existing rockets, and the launch pads around which they have been designed, have been grandfathered in. Space entrepeneurs must either find a way to negotiate the legal minefield from scratch or else pay high fees to use the existing facilities. While some of these regulatory complications can be reduced by going outside of the developed world, this introduces a whole new set of complications since space technology is regulated as armaments, and this imposes strict limits on the ways in which American rocket scientists can collaborate with foreigners. Moreover, the rocket industry’s status as a colossal government-funded program with seemingly eternal lifespan has led to a situation in which its myriad contractors and suppliers are distributed over the largest possible number of Congressional districts; anyone who has witnessed Congress in action can well imagine the consequences of giving it control over a difficult scientific and technological program.

  Dr. Jordin Kare, a physicist and space launch expert to whom I am indebted for some of the details mentioned above, visualizes the result as a triangular feedback loop joining big expensive launch systems; complex, expensive, long-life satellites; and few launch opportunities. To this could be added any number of cultural factors (the engineers populating the aerospace industry are heavily invested in the current way of doing things); the insurance and regulatory factors mentioned above; market inelasticity (cutting launch cost in half wouldn’t make much of a difference); and even accounting practices (how do you amortize the non-recoverable expenses of an innovative program over a sufficiently large number of future launches?).

  To employ a commonly used metaphor, our cu
rrent proficiency in rocket-building is the result of a hill-climbing approach; we started at one place on the technological landscape—which must be considered a random pick, given that it was chosen for dubious reasons by a maniac—and climbed the hill from there, looking for small steps that could be taken to increase the size and efficiency of the device. Sixty years and a couple of trillion dollars later, we have reached a place that is infinitesimally close to the top of that hill. Rockets are as close to perfect as they’re ever going to get. For a few more billion dollars we might be able to achieve a microscopic improvement in efficiency or reliability, but to make any game-changing improvements is not merely expensive; it’s a physical impossibility.

  There is no shortage of proposals for radically innovative space launch schemes that, if they worked, would get us across the valley to other hilltops considerably higher than the one we are standing on now—high enough to bring the cost and risk of space launch down to the point where fundamentally new things could begin happening in outer space. But we are not making any serious effort as a society to cross those valleys. It is not clear why. A temptingly simple explanation is that we are decadent and tired. But none of the bright young up-and-coming economies seem to be interested in anything besides aping what the U.S. and the USSR did years ago. We may, in other words, need to look beyond strictly U.S.-centric explanations for such failures of imagination and initiative. It might simply be that there is something in the nature of modern global capitalism that is holding us back. Which might be a good thing, if it’s an alternative to the crazy schemes of vicious dictators. Admittedly, there are many who feel a deep antipathy for expenditure of money and brainpower on space travel when, as they never tire of reminding us, there are so many problems to be solved on earth. So if space launch were the only area in which this phenomenon were observable, it would be of concern only to space enthusiasts. But the endless BP oil spill of 2010 highlighted any number of ways in which the phenomena of path dependency and lock-in have trapped our energy industry on a hilltop from which we can gaze longingly across not-so-deep valleys to much higher and sunnier peaks in the not-so-great distance. Those are places we need to go if we are not to end up as the Ottomon Empire of the 21st Century, and yet in spite of all of the lip service that is paid to innovation in such areas, it frequently seems as though we are trapped in a collective stasis. As described above, regulation is only one culprit; at least equal blame may be placed on engineering and management culture, insurance, Congress, and even accounting practices. But those who do concern themselves with the formal regulation of “technology” might wish to worry less about possible negative effects of innovation and more about the damage being done to our environment and our prosperity by the mid–Twentieth Century technologies that no sane and responsible person would propose today, but in which we remain trapped by mysterious and ineffable forces.

  Innovation Starvation (2011)

  My lifespan encompasses the era when the United States of America was capable of launching human beings into space. Some of my earliest memories are of sitting on a braided rug before a hulking black-and-white television, watching the early Gemini missions. This summer, at the age of 51—not even old—I watched on a flat-panel screen as the last Space Shuttle lifted off the pad. I have followed the dwindling of the space program with sadness, even bitterness. Where’s my donut-shaped space station? Where’s my ticket to Mars? Until recently, though, I have kept my feelings to myself. Space exploration has always had its detractors. To complain about its demise is to expose oneself to attack from those who have no sympathy that an affluent, middle-aged white American has not lived to see his boyhood fantasies fulfilled.

  Still, I worry that our inability to match the achievements of the 1960s space program might be symptomatic of a general failure of our society to get big things done. My parents and grandparents witnessed the creation of the airplane, the automobile, nuclear energy, and the computer, to name only a few. Scientists and engineers who came of age during the first half of the 20th century could look forward to building things that would solve age-old problems, transform the landscape, build the economy, and provide jobs for the burgeoning middle class that was the basis for our stable democracy.

  The Deepwater Horizon oil spill of 2010 crystallized my feeling that we have lost our ability to get important things done. The OPEC oil shock was in 1973—almost 40 years ago. It was obvious then that it was crazy for the United States to let itself be held economic hostage to the kinds of countries where oil was being produced. It led to Jimmy Carter’s proposal for the development of an enormous synthetic fuels industry on American soil. Whatever one might think of the merits of the Carter presidency or of this particular proposal, it was, at least, a serious effort to come to grips with the problem.

  Little has been heard in that vein since. We’ve been talking about wind farms, tidal power, and solar power for decades. Some progress has been made in those areas, but energy is still all about oil. In my city, Seattle, a 35-year-old plan to run a light rail line across Lake Washington is now being blocked by a citizen initiative. Thwarted or endlessly delayed in its efforts to build things, the city plods ahead with a project to paint bicycle lanes on the pavement of thoroughfares.

  In early 2011, I participated in a conference called Future Tense, where I lamented the decline of the manned space program, then pivoted to energy, indicating that the real issue isn’t about rockets. It’s our far broader inability as a society to execute on the big stuff. I had, through some kind of blind luck, struck a nerve. The audience at Future Tense was more confident than I that science fiction (SF) had relevance—even utility—in addressing the problem. I heard two theories as to why:

  1. The Inspiration Theory. SF inspires people to choose science and engineering as careers. This much is undoubtedly true, and somewhat obvious.

  2. The Hieroglyph Theory. Good SF supplies a plausible, fully thought-out picture of an alternate reality in which some sort of compelling innovation has taken place. A good SF universe has a coherence and internal logic that makes sense to scientists and engineers. Examples include Isaac Asimov’s robots, Robert Heinlein’s rocket ships, and William Gibson’s cyberspace. As Jim Karkanias of Microsoft Research puts it, such icons serve as hieroglyphs—simple, recognizable symbols on whose significance everyone agrees.

  Researchers and engineers have found themselves concentrating on more and more narrowly focused topics as science and technology have become more complex. A large technology company or lab may employ hundreds or thousands of persons, each of whom can only address a thin slice of the overall problem. Communication among them can become a mare’s nest of email threads and PowerPoints. The fondness that many such people have for SF reflects, in part, the usefulness of an over-arching narrative that supplies them and their colleagues with a shared vision. Coordinating their efforts through a command-and-control management system is a little like trying to run a modern economy out of a Politburo; letting them work toward an agreed-on goal is something more like a free and largely self-coordinated market of ideas.

  SF HAS CHANGED OVER THE SPAN OF TIME I AM TALKING ABOUT—FROM THE 1950s (the era of the development of nuclear power, jet airplanes, the space race, the computer) to now. Speaking broadly, the techno-optimism of the Golden Age of SF has given way to fiction written in a generally darker, more skeptical and ambiguous tone. I myself have tended to write a lot about hackers—trickster archetypes who exploit the arcane capabilities of complex systems devised by faceless others.

  Believing we have all the technology we’ll ever need, we seek to draw attention to its destructive side effects. This seems foolish, though, now that we find ourselves saddled with technologies like Japan’s ramshackle 1960’s-vintage reactors at Fukushima. The imperative to develop new technologies and implement them on a heroic scale no longer seems like the childish preoccupation of a few nerds with slide rules. It’s the only way for the human race to escape from its current predicaments. To
o bad we’ve forgotten how to do it.

  “You’re the ones who’ve been slacking off!” proclaimed Michael Crow, the President of Arizona State University (and one of the other speakers at Future Tense), when I spoke with him recently. He was referring, of course, to SF writers. The scientists and engineers, he seemed to be saying, are ready, and looking for things to do. Time for the SF writers to start pulling their weight and supplying big visions that make sense. Hence the Hieroglyph project, an effort to produce an anthology of new SF that will be in some ways a conscious throwback to the practical techno-optimism of the Golden Age.

  CHINA IS FREQUENTLY CITED AS A COUNTRY THAT IS NOW EXECUTING ON BIG STUFF, and there’s no doubt that they are constructing dams, high-speed rail systems, and rockets at an extraordinary clip. But those are not fundamentally innovative. Their space program, like all other countries’ (including our own), is just parroting work that was done 50 years ago by the Soviets and the Americans. A truly innovative program would involve taking risks (and accepting failures) to pioneer some of the alternative space launch technologies that have been advanced by researchers all over the world during the decades dominated by rockets.

  Imagine a factory mass-producing small vehicles, about as big and about as complicated as refrigerators, which roll off the end of the assembly line, are loaded with space-bound cargo, and topped off with non-polluting liquid hydrogen fuel, then exposed to the intense concentrated heat of an array of ground-based lasers or microwave antennas. Heated to temperatures beyond what can be achieved by a chemical reaction, the hydrogen erupts from a nozzle on the base of the device and sends it rocketing into the air. Tracked through its flight by the lasers or the microwaves, the vehicle soars into orbit carrying a larger payload for its size than a chemical rocket could ever manage, but the complexity, expense, and jobs remain grounded. For decades, this has been the vision of such researchers as physicists Jordin Kare and Kevin Parkin. A similar idea, using a pulsed ground-based laser to blast propellant from the backside of a space vehicle, was being talked about by Arthur Kantrowitz, Freeman Dyson, and other eminent physicists in the early 1960s.

 

‹ Prev