Technology of the Gods: The Incredible Sciences of the Ancients
Page 24
“A tube drill of this design would also explain the tapering of the sides of the hole and the core. By using a tube-drill made of softer material than the abrasive, the cutting edge would gradually wear away. The dimensions of the hole, therefore, would correspond to the dimensions of the tool at the cutting edge. As the tool became worn, the hole and the core would reflect this wear in the form of a taper.”98
Dunn claims that with ultrasonic machining, the tool can plunge straight down into the workpiece. It can also be screwed into the workpiece. The spiral groove can be explained if we consider one of the methods that is predominantly used to uniformly advance machine components. The rotational speed of the drill is not a factor in this cutting method. The rotation of the drill is merely a means to advance the drill into the workpiece. Using a screw and nut method the tube drill could be efficiently advanced into the workpiece by turning in a clockwise direction. The screw would gradually thread through the nut, forcing the oscillating drill into the granite. It would be the ultrasonically induced motion of the drill that would do the cutting and not the rotation. The latter would only be needed to sustain a cutting action at the workface. By definition, the process is not a drilling process by conventional standards, but a grinding process in which abrasives are caused to impact the material in such a way that a controlled amount of material is removed.
Says Dunn, “Another method by which the grooves could have been created is through the use of a spinning trepanning tool that has been mounted off-centered to its rotational axis. Clyde Treadwell of Sonic Mill Inc., Albuquerque, NM, explained to me that when an off-centered drill rotated into the granite, it would gradually be forced into alignment with the rotational axis of the drilling machine’s axis. The grooves, he claims, could be created as the drill was rapidly withdrawn from the hole.
“If Treadwell’s theory is the correct one, it still requires a level of technology that is far more developed and sophisticated than what the ancient pyramid builders are given credit for. This method may be a valid alternative to the theory of ultrasonic machining, even though ultrasonics resolves all the unanswered questions where other theories have fallen short. Methods may have been proposed that might cover a singular aspect of the machine marks and not progress to the method described here. It is when we search for a single method that provides an answer for all data that we move away from primitive, and even conventional machining, and are forced to consider methods that are somewhat anomalous for that period in history.”98
Granite Boxes in Rock Tunnels
In February 1995 Dunn joined Graham Hancock and Robert Bauval in Cairo to participate in a documentary. While there, he came across and measured some artifacts produced by the ancient pyramid builders, which prove beyond a shadow of a doubt that highly advanced and sophisticated tools and methods were employed by this ancient civilization. The group were examining artifacts found in the rock tunnels at the temple of Serapeum at Saqqarra, the site of the step pyramid and Zoser’s tomb. Says Dunn, “We were in the stifling atmosphere of the tunnels, where the dust kicked up by tourists lay heavily in the still air. These tunnels contain 21 huge granite boxes. Each box weighs an estimated 65 tons, and, together with the huge lid that sits on top of them, the total weight of the assembly is around 100 tons. Just inside the entrance of the tunnels there is a lid that had not been finished and beyond this lid, barely fitting within the confines of one of the tunnels, is a granite box that had also been rough hewn.
“The granite boxes are approximately 13 ft. long, 71/2 ft. wide and 11 ft. high. They are installed in ‘crypts’ that were cut out of the limestone bedrock at staggered intervals along the tunnels. The floors of the crypts were about 4 ft. below the tunnel floor, and the boxes were set into a recess in the center. Bauval was addressing the engineering aspects of installing such huge boxes within a confined space where the last crypt was located near the end of the tunnel. With no room for the hundreds of slaves pulling on ropes to position these boxes, how were they moved into place?
“While Hancock and Bauval were filming, I jumped down into a crypt and placed my parallel against the outside surface of the box. It was perfectly flat. I shone the flashlight and found no deviation from a perfectly flat surface. I clambered through a broken out edge into the inside of another giant box and again, I was astonished to find it astoundingly flat. I looked for errors and couldn’t find any. I wished at that time that I had the proper equipment to scan the entire surface and ascertain the full scope of the work. Nonetheless, I was perfectly happy to use my flashlight and straight edge and stand in awe of this incredibly precise and incredibly huge artifact. Checking the lid and the surface on which it sat, I found them both to be perfectly flat. It occurred to me that this gave the manufacturers of this piece a perfect seal. Two perfectly flat surfaces pressed together, with the weight of one pushing out the air between the two surfaces. The technical difficulties in finishing the inside of this piece made the sarcophagus in Khafra’s pyramid seem simple in comparison. Canadian researcher Robert McKenty accompanied me at this time. He saw the significance of the discovery and was filming with his camera. At that moment I knew how Howard Carter must have felt when he discovered Tutankhamen’s tomb.
“The dust-filled atmosphere in the tunnels made breathing uncomfortable. I could only imagine what it would be like if I was finishing off a piece of granite, regardless of the method used, how unhealthy it would be. Surely it would have been better to finish the work in the open air? I was so astonished by this find that it didn’t occur to me until later that the builders of these relics, for some esoteric reason, intended for them to be ultra precise. They had taken the trouble to bring into the tunnel the unfinished product and finish it underground for a good reason! It is the logical thing to do if you require a high degree of precision in the piece that you are working. To finish it with such precision at a site that maintained a different atmosphere and a different temperature, such as in the open under the hot sun, would mean that when it was finally installed in the cool, cave-like temperatures of the tunnel, you would lose that precision. The granite would change its shape through thermal expansion and contraction. The solution then as it is now, of course, is to prepare precision surfaces in the location in which they were going to be housed.
Christopher Dunn
“This discovery, and the realization of its critical importance to the artisans that built it, went beyond my wildest dreams of discoveries to be made in Egypt. For a man of my inclination, this was better than King Tut’s tomb. The Egyptians’ intentions with respect to precision are perfectly clear, but to what end? Further studies of these artifacts should include thorough mapping and inspection with the following tools. A laser interferometer with surface flatness checking capabilities. An ultrasonic thickness gauge to check the thickness of the walls to determine their consistency to uniform thickness. An optical flat with monochromatic light source. Are the surfaces really finished to optical precision?”98
Dunn contacted four precision granite manufacturers in the US and hasn’t been able to find one who can do this kind of work. He received a letter from Eric Leither of Tru-Stone Corp about the technical feasibility of creating several Egyptian artifacts, including the giant granite boxes found in the bedrock tunnels the temple of Serapeum at Saqqarra. The letter read as follows:
“Dear Christopher,
First I would like to thank you for providing me with all the fascinating information. Most people never get the opportunity to take part in something like this. You mentioned to me that the box was derived from one solid block of granite. A piece of granite of that size is estimated to weigh 200,000 pounds if it was Sierra White granite which weighs approximately 175 Ibs. per cubic foot. If a piece of that size was available, the cost would be enormous. Just the raw piece of rock would cost somewhere in the area of $115,000.00. This price does not include cutting the block to size or any freight charges. The next obvious problem would be the transportation. There would be m
any special permits issued by the D.O.T. and would cost thousands of dollars. From the information that I gathered from your fax, the Egyptians moved this piece of granite nearly 500 miles. That is an incredible achievement for a society that existed hundreds of years ago.“
Says Dunn, “Eric went on to say that his company did not have the equipment or capabilities to produce the boxes in this manner. He said that his company would create the boxes in 5 pieces, ship them to the customer and bolt them together on site.
“Another artifact I inspected was a piece of granite that I, quite literally, stumbled across while strolling around the Giza Plateau later that day. I concluded, after doing a preliminary check of this piece, that the ancient pyramid builders had to have used a machine with three axes of movement (X-Y-Z) to guide the tool in three-dimensional space to create it. Outside of being incredibly precise, normal flat surfaces, being simple geometry, can justifiably be explained away by simple methods. This piece, though, drives us beyond the question, ”What tools were used to cut it?“ to a more far reaching question, ”What guided the cutting tool?“ In addressing this question and being comfortable with the answer, it is helpful to have a working knowledge of contour machining.
“Many of the artifacts that modern civilization creates would be impossible to produce using simple handwork. We are surrounded by artifacts that are the result of men and women employing their minds to create tools which overcome physical limitations. We have developed machine tools to create the dies that produce the aesthetic contours on the cars that we drive, the radios we listen to and the appliances we use. To create the dies to produce these items, a cutting tool has to accurately follow a predetermined contoured path in three dimensions. In some applications it will move in three dimensions, simultaneously using three or more axes of movement. The artifact that I was looking at required a minimum of three axes of motion to machine it. When the machine tool industry was relatively young, techniques were employed where the final shape was finished by hand, using templates as a guide. Today, with the use of precision computer numerical control machines, there is little call for handwork. A little polishing to remove unwanted tool marks may be the only handwork required. To know that an artifact has been produced on such a machine, therefore, one would expect to see a precise surface with indications of tool marks that show the path of the tool. This is what I found on the Giza Plateau, laying out in the open south of the Great Pyramid about 100 yards east of the second pyramid.
“There are so many rocks of all shapes and sizes lying around this area that to the untrained eye, this one could easily be overlooked. To a trained eye, it may attract some cursory attention and a brief muse. I was fortunate that it both caught my attention, and that I had some tools with which to inspect it. There were two pieces laying close together, one larger than the other. They had originally been one piece and had been broken. I found I needed every tool that I had brought with me to inspect it. I was most interested in the accuracy of the contour and its symmetry.
“What we have is an object that, three dimensionally as one piece, could be compared in shape to a small sofa. The seat is a contour that blends into the walls of the arms and the back. I checked the contour using the profile gauge along three axes of its length, starting at the blend radius near the back, and ending near the tangency point, which blended smoothly where the contour radius meets the front. The wire radius gauge is not the best way to determine the accuracy of this piece. When adjusting the wires at one position on the block and moving to another position, the gauge could be re-seated on the contour, but questions could be raised as to whether the hand that positioned it compensated for some inaccuracy in the contour. However, placing the parallel at several points along and around the axes of the contour, I found the surface to be extremely precise. At one point near a crack in the piece, there was light showing through, but the rest of the piece allowed very little to show.
“During this time, I had attracted quite a crowd. It’s difficult to traverse the Giza Plateau at the best of times without getting attention from the camel drivers, donkey riders and purveyors of trinkets. It wasn’t long after I had pulled the tools out of my backpack that I had two willing helpers, Mohammed and Mustapha, who weren’t at all interested in compensation. At least that’s what they told me, but I can honestly say that I lost my shirt on that adventure. I had cleaned sand and dirt out of the corner of the larger block and washed it out with water. I used a white T-shirt that I was carrying in my backpack to wipe the corner out so I could get an impression of it with forming wax. Mustapha talked me into giving him the shirt before I left. I was so inspired by what I had found I tossed it to him. Mohammed held the wire gauge at different points along the contour while I took photographs of it. I then took the forming wax and heated it with a match, kindly provided by the Movenpick hotel, then pressed it into the corner blend radius. I shaved off the splayed part and positioned it at different points around. Mohammed held the wax still while I took photographs. By this time there was an old camel driver and a policeman on a horse looking on.
“What I discovered with the wax was a uniform radius, tangential with the contour, the back and the side wall. When I returned to the US, I measured the wax using a radius gauge and found that it was a true radius measuring 7/16 inch. The side (arm) blend radius has a design feature that is a common engineering practice today. By cutting a relief at the corner, a mating part that is to match or butt up against the surface with the large blend radius may have a smaller radius. This feature provides for a more efficient machining operation, because it allows a cutting tool with a large diameter, and, therefore, a large radius to be used. With greater rigidity in the tool, more material can be removed when making a cut. I believe there is more, much more, that can be gleaned using these methods of study. I believe the Cairo Museum contains many artifacts that when properly analyzed, will lead to the same conclusion that I have drawn from this piece.”98
High-Speed, Motorized Machinery Must Have Been Used
Says Dunn in conclusion, “The use of high-speed motorized machinery, and what we might call modern techniques in non-conventional machining, in manufacturing the granite artifacts found at Giza and other locations in Egypt warrants serious study by qualified, open-minded people who could approach the subject without preconceived notions.
“In terms of a more thorough understanding of the level of technology employed by the ancient pyramid builders, the implications of these discoveries are tremendous. We are not only presented with hard evidence that seems to have eluded us for decades, and which provide further evidence proving the ancients to be advanced, we are also provided with an opportunity to re-analyze everything from a different perspective. Understanding how something is made opens up a different dimension when trying to determine why it was made.
“The precision in these artifacts is irrefutable. Even if we ignore the question of how they were produced, we are still faced with the question of why such precision was needed. Revelation of new data invariably raises new questions. In this case it’s understandable to hear, ‘Where are the machines?’ Machines are tools. The question should be applied universally and can be asked of anyone who believes other methods may have been used. The truth is that no tools have been found to explain any theory on how the pyramids were built or granite boxes were cut! More than eighty pyramids have been discovered in Egypt, and the tools that built them have never been found. Even if we accepted the notion that copper tools are capable of producing these incredible artifacts, the few copper implements that have been uncovered do not represent the number of such tools that would have been used if every stonemason who worked on the pyramids at just the Giza site owned one or two. In the Great Pyramid alone, there are an estimated 2,300,000 blocks of stone, both limestone and granite, weighing between 2 tons and 70 tons each. That is a mountain of evidence, and there are no tools surviving to explain its creation.
“The principle of ‘Occams Razor,’ where the si
mplest means of manufacturing holds force until proven inadequate, has guided my attempt to understand the pyramid builders’ methods. With Egyptologists, there is one component of this principle that has been lacking. The simplest methods do not satisfy the evidence, and they have been reluctant to consider other less simple methods. There is little doubt that the capabilities of the ancient pyramid builders have been seriously underestimated. The most distinct evidence that I can relate is the precision and mastery of machining technologies that have only been recognized in recent years.
“Some technologies the Egyptians possessed still astound modern artisans and engineers primarily for this reason. The development of machine tools has been intrinsically linked with the availability of consumer goods and the desire to find a customer. One reference point for judging a civilization to be advanced has been our current state of manufacturing evolution. Manufacturing is the manifestation of all scientific and engineering effort. For over a hundred years industry has progressed exponentially. Since Petrie first made his critical observations between 1880 and 1882, our civilization has leapt forward at breakneck speed to provide the consumer with goods, all created by artisans, and still, over a hundred years after Petrie, these artisans are utterly astounded by the achievements of the ancient pyramid builders. They are astounded not so much by what they perceive a society is capable of using primitive tools, but by comparing these prehistoric artifacts with their own current level of expertise and technological advancement.
“The interpretation and understanding of a civilization’s level of technology should not hinge on the preservation of a written record of every technique that they had developed. The ‘nuts and bolts’ of our society do not always make good copy, and a stone mural will more than likely be cut to convey an ideological message rather than the technique used to inscribe it. Records of the technology developed by our modern civilization rest in media that is vulnerable and could conceivably cease to exist in the event of a worldwide catastrophe, such as a nuclear war or another ice age. Consequently, after several thousand years, an interpretation of an artisan’s methods may be more accurate than an interpretation of his language. The language of science and technology doesn’t have the same freedom as speech. So even though the tools and machines have not survived the thousands of years since their use, we have to assume, by objective analysis of the evidence, that they did exist.