Book Read Free

Secret Weapons

Page 11

by Brian Ford


  Goddard had declared his private beliefs in the class oration which he gave on graduating back in 1904. ‘It has often proved true that the dream of yesterday is the hope of today,’ he said, ‘and the reality of tomorrow.’ The twentieth century, and the remarkable events of World War II, would prove how true those words would be.

  Rocket visionaries

  Rockets had been used during World War I, first by the French. In April 1916, Le Prieur rockets fired from the struts of a Nieuport fighter had brought down the German Zeppelin LC-77 full of blazing hydrogen. Later in the conflict a Belgian flyer, Willy Coppens, and a British pilot, Albert Ball, used small experimental rockets against German balloons. Nothing came of either event, and incendiary shells were found to be more effective.

  During the 1920s there were enthusiasts studying rocketry in Russia, France and the United States, but there was little sense of common purpose. In Germany, however, the burgeoning sense of nationalism began to catch the popular imagination. Hermann Oberth was one of the greatest visionaries. He was a medical student at Munich and in 1922 he wrote to Goddard in America to request reprints of his writings on rocketry. Oberth was writing a book which in 1923 was published as Die Rakete zu den Planetenräumen (The Rocket into Interplanetary Space) in which he emphasized how much he had been impressed by Goddard’s writings, which he cited, but went on to write that his book had not in any way plagiarized his American forebear. But interest was suddenly growing in Germany. The very next year Max Valier published Der Vorstross in Weltraum (The Drive to Outer Space) and a year after that Walter Hohmann published his book entitled Die Erreichbarkeit der Himmelskörper (The Attainability of Celestial Bodies). This volume was so technically detailed that it was still being consulted decades later by NASA. In 1926 Willy Ley published his popular book Die Fahrt ins Weltall (Journey into Space) and in July 1927 a group of amateur rocketry enthusiasts — engineers, scientists, doctors, students — met at a restaurant in Breslau to launch the Society for Space Travel (Verein für Raumschiffahrt, known as the VfR), with Hermann Oberth at its heart. It is worth noting that this was an association, not a university department. Although rockets were suddenly fashionable, they remained a subject for amateurs.

  The German Society for Space Travel

  Within a few weeks of its launch in June 1927, the Society for Space Travel recruited a new member: the young Wernher von Braun, who was destined to become the most influential rocket designer of all. Membership of the Society — mostly young scientists and engineers — soon rose to about 500 and they inaugurated a regular magazine, Die Rakete (The Rocket). Von Braun was among the group (others were Walter Hohmann, Klaus Riedel, Eugen Sänger, Rudolf Nebel and Max Valier as well as Hermann Oberth and Willy Ley) who were popularizing the science of rockets. Valier organized tests of rockets attached to cars, gliders, railway trucks and even sledges. The first tests took place at a former ammunition dump at Reinickendorf, which soon earned the nickname Raketenflugplatz (Rocket Airfield) and today is the site of Tegel Airport.

  By 1930 the Society for Space Travel was so well established that its members set up a permanent office in Berlin and agreed a design for a rocket motor powered by gasoline and liquid oxygen. This was the Mirak-1. It had its combustion chamber surrounded by the liquid oxygen tank. The liquid fuel was supplied from a hollow tail stick acting as a storage reservoir. The ‘head’ of the rocket was 1ft (30cm) in length; the tail measured about 3ft (1m) long. The first experimental firing was successful, but the oxygen tank exploded on the second test.

  Early in 1931, Karl Poggensee launched his design for a solid-fuel rocket near Berlin. He fitted it with cameras, a speedometer and an altimeter which showed that it reached 1,500ft (450m) before landing by parachute. The first German rocket with liquid fuel was launched in the same year by Johannes Winkler and Hugo Huckel who were independent enthusiasts and not members of the Society. Their choice of fuel was liquid oxygen and methane burned in a rocket some 2ft (60cm) long. Just as had happened with the Mirak-1, the first test near Dessau was successful (the rocket reached 1,000ft, about 300m) but the second test launch in East Prussia failed when fire burst from the rocket and it crashed after reaching an altitude of 10ft (just over 3m). In April 1931 Reinhold Tiling tested a series of four solid-fuel rockets at Osnabrück. One detonated at 500ft (about 150m) but the others were successfully fired — one reaching 6,600ft (2,000m) at a maximum speed of 700mph (1,100km/h). One of his later rockets was reckoned to have reached 11,500ft (3,505m).

  Research by the Society for Space Travel was moving ahead. Their new design of rockets was proposed by Willy Ley who called them Repulsors. It is a revealing choice of name. Earlier rockets had been given neutral names, or (like the Huckel/Winkler rockets) were named after their inventors. ‘Repulsor’ sounds much more like a military device and perhaps Willy Ley was already thinking of using military money to further his research. Like the Mirak rockets, the Repulsor burned a combination of liquid oxygen and gasoline but the combustion chamber was cooled by water in a double-walled metal jacket, rather than being cooled by the liquid oxygen. This was an inherently safer design. In May 1931 two of the Repulsor rockets reached a height of 200ft (61m). With the development of the Repulsor-3, an altitude of 2,000ft (610m) was reached and later in 1931 Repulsor-4 rockets were reportedly reaching a mile into the sky. Although rocketry was internationally regarded with indifference — and was usually dismissed, even ridiculed, whenever it emerged — in Germany it was allowing fresh new minds to find satisfaction.

  In 1932 the Society for Space Travel first came to the attention of the authorities. This was not because the enthusiasts were seen as brilliant young men, but because there had been complaints about the rocket tests from people living in the area due to the noise. The Society’s members had no specific authorization to carry out testing, and there was a growing fear about the increasing influence of Hitler. Hitler had begun to issue directives that restricted the activities of all organizations that had significant ties to the outside world as his influence began to grow. Members became increasingly nervous and began to drift away. In a period of economic collapse, the Society could not manage to meet its financial obligations without the membership income and later in 1933 the Society for Space Travel finally closed down. It is surprising to realize that world’s first ever rocketry organization — the results of which were to revolutionize warfare — was shut down largely because of pressure from the authorities.

  Civilian research continues

  Even after the demise of the Society for Space Travel, some members were able to continue their activities. Some of the senior staff within the German Army had been persuaded that rocketry might yet prove to be important and as early as 1931 they had allowed Society members to conduct a test launch at the army proving ground at Kummersdorf. The rocket they authorized for the launch was a Repulsor. Its name doubtless endeared it to the military Carl Becker. As soon as he saw that the Kummersdorf people were supporting rocket development, Wernher von Braun asked permission to continue his experiments as part of his doctoral thesis on rocket propulsion. His luck was in, and he was authorized to continue to use the Kummersdorf facility. Despite the collapse of the Society Von Braun’s private passion was saved.

  Meanwhile an engineer named Franz Mengering, who worked for the City of Magdeburg, had become a devotee of the writings of Peter Bender. Bender propounded the Hohlweltlehr (hollow world doctrine) which held that — instead of being a globe — the world was a hollow sphere. Instead of flying the long way round to Australasia, Bender asserted that it would be quicker to fly straight up in the air. In this way a rocket could easily hit New Zealand. Mengering was convinced that it would be easy to prove, using a small rocket with a message from Germany. If Bender’s theory was correct, then the missile would land near the South Island of New Zealand. Franz Mengering even managed to persuade the authorities at Magdeburg to fund some trial experiments. Rudolf Nebel, one of the founders of the Society for Space Travel, s
uccessfully applied for a grant of 25,000 Reichsmarks to fund the design of the rocket. Nebel had joined the Nazi Party and ingratiated himself with the authorities and stated his ambition to fly a man in a rocket 1km (over half a mile) above the earth’s surface, from where he would descend by parachute. The rocket would be designed with his partner Herbert Schäfer. They proposed to launch their rocket in June 1933 as part of a major fair promoting the city of Magdeburg. The idea was to adapt the Repulsor design, with a volunteer secured inside in a torpedo-shaped fairing below the motor. The fuels would be stored in two long tubes trailing behind the rocket. It would be 25ft (7.6m) tall and a 14ft (4.6m) unmanned prototype would be used to prove that the idea worked.

  In June 1933 they attempted their first launch of a test rocket at nearby Wolmirstedt, but it did not even leave the 30ft (10m) launch tower. The only successful flight was from Lindwerder Island in one of the numerous lakes that surround Berlin. It is reported to have reached 3,000ft (1,000m) before crashing to the ground only 300ft (100m) from the launch pad, which must have been a highly stimulating experience for the panicking launch crew. Some further tests were conducted from a boat moored in Lake Schwielow in August 1933, but the results were a disappointment with some of the rockets looping uncontrollably across the sky. Eventually, the whole Magdeburg Project was closed down and Nebel received just 3,200 Reichsmarks of the promised grant for his efforts.

  THE NAZI ROCKETS

  The chief of the Army Ordnance Bureau (the Heereswaffenamt), Colonel Carl Becker, was an expert on ballistics. In 1926 he had drafted a short paragraph on military rockets for the Army Textbook of Ballistics and in 1929 he issued instructions to contact any amateur rocket societies whose enthusiasts might have useful insights into how rockets could perhaps be developed. Becker was aware that rockets had not been referred to in the Treaty of Versailles, and he knew that there could be no restriction on further research into this potentially important area of ballistics. In the following year, Captain (later Major-General) Walter Dörnberger joined Becker’s office to start work on a possible new solid-fuel rocket with a range of up to 5 miles (8km).

  Bureaucracy was quick to play a part. It was decided that the proposals for solid-fuel rockets could best be advanced if there was an official development and testing facility, and the result was the establishment of the Army Ordnance Bureau’s Research and Development Department (the Heereswaffenamt-Prüfwesen, conveniently known for short as the Wa Prüf) at Versuchsstelle Kummersdorf-West. This would become a development laboratory and a testing site for missiles. The Heereswaffenamt-Prüfwesen had been established in 1919 as the Reichwaffenamt (RWA), and adopted the name Heereswaffenamt (HWA) in 1922. As the Nazi Party began to assert its position and Germany began to move to a warlike posture during the 1930s, the task of overseeing the rearmament was handed over to the Army Acceptance Organization (the Heeresabnahmestelle, abbreviated to the Abnahme), a subsidiary of the Army Ordnance Bureau. Whether those involved ever understood it all is far from clear.

  For a while, Dörnberger covertly provided funds for the Society for Space Travel but this stopped when he encountered a conflict between his interests in military rocketry, and the enthusiasts’ focus solely on space flight. However his engineers were pragmatists, and research on the solid-fuel rockets quickly showed that their applications would always be limited. Dörnberger soon realized that they were heading nowhere. He knew that he had to speak again with the enthusiasts. Many of them had academic interests in the technology of liquid-fuel rocket development. He was also aware that building rockets is a costly affair and the Society for Space Travel was always short of funds. When in 1932 Von Braun was offered the chance to become a professional rocket developer, rather than amateur enthusiast, he was delighted to accept. His ambitions to develop bigger and better rockets were suddenly within reach, while Dörnberger knew that he was establishing a new facility that would lead him to military pre-eminence. At the time Von Braun joined there was little official enthusiasm for rocketry, but the increased military tensions allowed the Kummersdorf administration to claim a steadily expanding budget. By 1936 the total number of staff was 60, and by the outbreak of war it was almost 300. They were the cream of German rocket enthusiasts and were a new breed; so too were the weapons they were starting to develop.

  Dörnberger and Von Braun had very different personal priorities. Dörnberger could envisage the crucial influence of missiles in the military arena, while Von Braun always wanted — more than anything else in the world — to build bigger and better rockets. When the Nazis swept to power in 1933, Dörnberger sensed that the ultimate quest was military supremacy, and he knew that the new generation of rocketry enthusiasts could offer untold benefits to the army of an expansionist state. These new weapons could lead Germany towards world domination. For Von Braun it was different. It was the majesty of the space rocket that lured him on. Dörnberger could see that his military career offered the chance of spectacular professional success, whereas Von Braun recognized that the growing might of the German military machine could be tapped for all the funding, all the technical support and all the security that his private passions demanded.

  Building the A-1 and A-2

  Under Dörnberger, the research institute at Kummersdorf had established itself as a major facility for the development and testing of a number of rocket-assisted take-off units for aircraft, using solid fuel. Von Braun found himself responsible for conducting the tests under Major Wolfram von Richthofen and Ernst Heinkel. Under Dörnberger’s leadership, the team designed and built their first liquid-fuel Aggregate-1 (A-1) rocket. It was powered by liquid oxygen and alcohol. The fuel and oxidant were forced into the combustion chamber by pressure from a liquid-nitrogen tank and the rocket could develop a thrust of about 660lb (300kg). A heavy gyroscope was installed in the nose cone to stabilize the rocket during flight. Tests showed that the design of the A-1 was flawed. The small liquid oxygen tank concealed within its alcohol fuel tank was prone to failure, with catastrophic consequences. Furthermore, the gyroscope was too far from the middle of the rocket to stabilize it effectively. As a result, the A-1 was abandoned.

  The A-2, which soon followed, had alcohol and liquid oxygen tanks that were safely separated from each other, and the gyroscope was located near the middle of the rocket between the two fuel tanks. In December 1934 the first two A-2 rockets were ready. They were dubbed Max and Moritz after cartoon characters in German comics. The cartoons had first emerged in 1865 from the pen of the German caricaturist Wilhelm Busch, who is said to have had a profound influence on the then-new comic strip industry in the United States. The two rockets bearing the affectionate nicknames were launched from Borkum, an island off the Dutch coast in the Baltic Sea. Both reached about 6,500ft (2,000m) and the military authorities were pleased with the results. In 1935, Carl Becker (now a general) put together a proposal to Hitler in which he advocated the development of a large long-range rocket for the bombardment of enemy territory. It would, he impressed upon the Führer, offer a highly intimidating weapon against any future enemy of the Reich. Hitler considered the proposal, and rejected it out of hand. There was no future for large rockets in the German military, concluded the Führer. When they wanted to dominate a nation, they would use political power or military might to do so. Army missiles need not feature in his plans.

  Sänger joins the team

  Nevertheless, Eugen Sänger, whose proposals for the ‘antipodal bomber’ we have already encountered, was thought of by the engineering fraternity as a leading figure in rocket development and was invited to join the research teams at the Air Force Research Centre at Trauen (between Berlin and Bremen) to investigate the improvement of rocket motor design. Eschewing highly volatile fuels, and determining to work with more prosaic ingredients, Sänger designed a liquid-fuel rocket motor that ran on ordinary diesel oil and liquid oxygen. He soon had engines running on a static bench for half an hour, at the time an incredible feat. Other specialists were assigned
to develop specific areas — telemetry (control systems), fuel combinations and so on — so that the rocket designers had an increasingly detailed knowledge base on which to rely. The majority of these research workers had no idea that they were jointly working on mechanisms that might eventually be used in giant rockets; they were brought in for a specific research project, and secrecy over its eventual purpose was strictly maintained. To the military strategists, and even (at the time) to the German High Command, rockets remained a curiosity and were still seen as being more useful for delivering small payloads, or for assisting the take-off of planes from aircraft carriers. The engineers were aware that they needed to keep the research moving ahead, even if their Führer could not see the point; and so plans for monster rockets were soon to emerge.

  Peenemünde is born

  Public protests about the noise and danger from the test firings at Kummersdorf meant there was a clear need for a new facility, well away from large populations and with plenty of space for testing larger rockets. In 1935 the decision was taken to find a new, remote location and enquiries began. During the Christmas holidays that followed, Von Braun accepted an invitation to spend some time with friends near the coast of the Baltic Sea. They lived at Anklam, between Stettin and Straslund, by the Peene River. There was an island named Usedom nearby, with just a few inhabitants living on an isolated, rural existence; the Baltic island of Greifswalder Oie lay on the horizon, and beyond that stretched the open Baltic — it was the perfect location for a rocket base. Von Braun reported back to Dörnberger, who asked for more details and later went to inspect the area personally. It was quickly resolved to transfer the research to this new base at the mouth of the Peene River — in German, Peenemünde.

 

‹ Prev