Book Read Free

Astrobiology_A Very Short Introduction

Page 14

by David C. Catling


  W. T. Sullivan, J. A. Baross (eds). Planets and Life: The Emerging Science of Astrobiology. (Cambridge: Cambridge University Press, 2007).

  The development of astrobiology from the 1950s onwards is described by: S. J. Dick, J. E. Strick. The Living Universe: NASA and the Development of Astrobiology. (New Brunswick, NJ: Rutgers University Press, 2004).

  An old classic on the nature of life is: E. Schrödinger. What Is Life? (1944; Cambridge: Cambridge University Press, 2012).

  Chapter 2: From stardust to planets, the abodes for life

  A readable discussion of modern Big Bang theory is given by: C. Lineweaver, T. Davis. 2005. Misconceptions about the Big Bang. Scientific American 292: 36–45.

  A popular account of Arthur Holmes’s quest to find the age of the Earth is: C. Lewis. The Dating Game: One Man’s Search for the Age of the Earth. (Cambridge: Cambridge University Press, 2012).

  Chapter 3: Origins of life and environment

  The science of the origin of life is described by: R. M. Hazen. Genesis: The Scientific Quest for Life’s Origin. (Washington, DC: Joseph Henry Press, 2005).

  A lucid description of the early evolution of life on Earth is: A. H. Knoll. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. (Princeton: Princeton University Press, 2003).

  Chapter 4: From slime to the sublime

  The Earth’s formation, evolution, and habitability are covered in: C. H. Langmuir, W. S. Broecker. How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind. (Princeton: Princeton University Press, 2012).

  Chapter 5: Life: a genome’s way of making more and fitter genomes

  A widely used introductory textbook on modern microbiology is: M. T. Madigan et al. Brock Biology of Microorganisms. (San Francisco: Benjamin Cummings, 2012).

  The effects of life on the Earth’s chemistry on a global level are described in the following textbook: W. H. Schlesinger, E. S. Bernhardt. Biogeochemistry, Third Edition: An Analysis of Global Change. (San Diego: Academic Press, 2013).

  Chapter 6: Life in the Solar System

  The planets of the Solar System and their habitability are described in the following textbook: J. J. Lissauer, I. de Pater. Fundamental Planetary Science: Physics, Chemistry and Habitability. (Cambridge: Cambridge University Press, 2013).

  Chapter 7: Far-off worlds, distant suns

  A readable book that discusses the search for habitable exoplanets is: J. F. Kasting. How to Find a Habitable Planet. (Princeton: Princeton University Press, 2010).

  Chapter 8: Controversies and prospects

  The controversial but engrossing book that argues for the scarcity of complex life is: P. D. Ward, D. Brownlee. Rare Earth: Why Complex Life is Uncommon in the Universe. (New York: Copernicus, 2000).

  Index

  A

  acetylene on Titan 106

  adaptive optics 113

  aeons on Mars 90

  age of the Earth 25–6

  albedo of the Earth 56

  Aldebaran (star) 18, 20

  ALH84001 meteorite 98–9

  Alpha-Centauri B 112

  alteration minerals 93–4

  aluminium-26 atoms 22–3

  Ames Research Center 1

  amino acids 76

  ammonia (NH3) 12, 107–9

  Andromeda galaxy 15

  anti-biosignatures 119

  Apex Chert rock formation, Australia 42

  archaea 66–9, 76, 78, 80

  Archaean aeon 32, 41, 46–8, 50–1

  Aristotle 3

  asteroid impacts 2, 24, 25, 30, 61–2, 96, 126 (see also meteorites)

  astrometry 111

  atmosphere 84–5

  on Earth 28, 32–4, 44–53, 54, 55, 118–19, 125

  on exoplanets 59, 117–19

  on Mars 84, 85, 89–90, 94–6, 97

  on Pluto 108

  on Titan (moon of Saturn) 103–4

  on Triton (moon of Neptune) 107

  on Venus 84, 85–8

  atoms common to life 9–10

  ATP (adenosine triphosphate) 35

  B

  bacteria 66–9, 75–6, 78, 98 (see also cyanobacteria)

  survival in extreme heat 79–80

  banded iron formations 50

  Bernal, J. Desmond 6

  Betelgeuse 19

  Big Bang 14, 16–17

  bioastronomy 5–6

  biomarkers 42–3, 54

  biomass 49, 63–4, 102, 108

  biomolecules 70–1, 73

  chirality 37–9

  biosignatures 118–19

  biospheres 60, 63–5, 115, 121

  black dwarfs 19

  black holes 20

  body structures 60

  ‘boring billion’ 53–5

  brain mass, proportional 122–3

  Brasier, Martin 42

  Brock, Thomas 79–80

  Brownlee, Don 125

  Budyko, Mikhail 56

  Buick, Roger 40

  C

  Callisto (moon of Jupiter) 102

  Cambrian Explosion 54, 59, 60

  cap carbonates 57

  carbohydrates 71, 78

  carbon, organic 10, 33–6, 39–40, 42, 50–52, 55, 74

  carbon assimilation experiment 96

  carbon-based life 9–10

  carbon dioxide 11, 32, 34

  in the Earth’s atmosphere 45–7, 51, 57

  greenhouse effect 45–8, 85–6, 95, 116

  in the habitable zone 117, 129

  on Mars 84, 85, 89, 94–6

  on Venus 84, 85, 86

  carbonate–silicate cycle 47–8

  Cassini–Huygens mission 104–5

  cells 58, 65–70, 78

  circulation 8

  Ceres (largest asteroid) 83, 99

  Charon (moon of Pluto) 108

  chemical elements 65

  chemical weathering 93

  chemiosmosis 35

  chemoheterotrophs 74–5

  Chicxulub, Mexico 61–2

  chirality 37–9

  Chiron 29–30

  chlorine 58–9

  chromosomes 69–70

  Chyba, Christopher 9

  Cleland, Carol 9

  climate

  on Mars 94–6

  regulation 47–8

  CO2 see carbon dioxide

  Cocconi, Guiseppe 120

  coherent energy 6–7

  continents, formation 28–9

  continuously habitable zone (CHZ) 115

  convergent evolution 122

  Copernican Principle 125–6

  coronograph 113

  Cosmic Connection (Sagan) 13

  Cosmic Microwave Background 16–17

  cosmobiology 6

  Cosmotheoros (Huygens) 4

  Creataceous–Paleogene mass extinction 61–2

  Crick, Francis 72

  cryovolcanism 107–8

  Curiosity Rover 89–90

  cyanobacteria 42–3, 49–50, 68–9, 76

  D

  Darwin, Charles 8–9, 31, 126

  Dawn mission 99

  definition of astrobiology 1–2, 5

  Democritus 3

  density of exoplanets 114–15

  direct detection of exoplanets 113–15

  dissipative structures 8

  DNA 32–3, 36, 69–70, 71–3

  DNA sequencing 77–8

  Doppler shift 111–12

  Drake, Frank (Drake Equation) 120–22

  dropstones 56

  dust particles 10

  dwarfs 19–21, 106, 116–17

  E

  Earth 84

  age 25–6

  atmosphere 28, 32–4, 44–53, 54, 55, 118–19, 125

  basis of life 9, 12, 63–70

  earliest aeon 28–36

  development of intelligent life 122, 124

  mass extinctions 60–2

  origin of life 1–2, 31–43

  as a ‘Pale Blue Dot’ 118

  position 14–15, 26–7r />
  Snowball Earth hypothesis 55–8

  uniqueness 3–4, 125–7

  Ediacarans 54

  Einstein, Albert 113

  elements

  chemical 65

  common to life 9–10, 89

  isotopes 22–3, 25–6

  non-metallic 12

  in stars 17–18, 19, 21, 117

  enantiomers 38–9

  Enceladus (moon of Saturn) 103, 128

  Encephalization Quotient (EQ) 122–3

  endosymbiosis 69

  energy 6–9, 87, 106

  infrared 45

  life-giving 65

  metabolic 35, 58, 73–5

  in photons 18

  precursor for life 58

  entropy 6–8

  eukaryotes 59, 66–70, 76, 78, 80

  Europa (moon of Jupiter) 100–2, 128–9

  ice on 2–3

  European Space Agency 114

  evolution 8–9, 48, 75

  during ‘boring billion’ 53–5

  chemical 31

  convergent 122

  diversity in 60

  exobiology 5

  exoplanets 3, 24–5

  atmosphere on 59, 117–19

  detection 110–15

  evidence of life on 115–19

  intelligent life on 120–4

  expansion of the universe 16–17

  extinctions, mass 60–2

  extraterrestrial intelligence (SETI) 120–4

  extraterrestrial life evidence of 2–3, 4

  intelligent 120–4

  likelihood of carbon base 9–10

  likelihood of silicon base 10–11

  probability 16

  significance 12–13

  theories about 3–4

  extremophiles 79–81

  F

  faint young Sun paradox 44–5

  Fermi, Enrico (Fermi Paradox) 123–4

  fluorine 58–9

  fossils 41–2, 53–4, 98

  G

  G-type stars 125–6

  galactic filaments 16

  galactic habitable zone (GHZ) 15, 117–18, 126

  galaxies 15–16

  birth of 17

  Galilean moons of Jupiter 99–102

  Galileo 126

  Galileo spacecraft 2–3, 101, 118

  gametes 69–70

  Ganymede (moon of Jupiter) 102

  gas chromatograph mass spectrometer (Viking lander) 97

  gas exchange experiment (Viking lander) 96–7

  gas giants 23–4

  gene transfers 77, 79

  genetics 75–9

  genomes 8, 36–7

  giant impact hypothesis 26

  giant planets 23–4

  glaciations 55–8

  Great Oxidation Event 48–53

  greenhouse effect 45–8, 85–6, 116

  on Mars 95

  gullies on Mars 91

  H

  habitable zone (HZ) 115–17

  Hadean aeon 28–36

  Haldane, J. B. S. 32

  half-life 22, 25

  Hawking, Stephen 126

  helium 17–18, 20

  Herrmann, Joachim 5

  Hertzsprung–Russell (H–R) diagram 20–21

  Holmes, Arthur 25–6

  homochirality 39

  Hooker, Joseph 31

  hot Jupiters 24–5, 110, 112

  Hubble, Edwin 16

  Huntress, Wes 5

  Huygens, Christiaan 4, 104–5

  hydrocarbons on Titan 106

  hydrogen 17, 20, 52–3, 88

  hydrogen bombs 18

  hydrogen peroxide 90

  hydrothermal vents 34–5, 42

  I

  ice

  density 11–12

  on Europa (moon of Jupiter) 2–3

  formation 55–7

  ice giants 23–4

  impact erosion 96

  impacts with Earth 28–30, 33–4, 61–2

  indirect detection of exoplanets 110–13

  infrared radiation 45–6, 87, 93

  inner planets, water on 84

  intelligent life on exoplanets 120–4

  interferometry 114

  intraterrestrial life 64

  Io (moon of Jupiter) 100

  iron 50, 51

  iron-60

  atoms 23

  isotopes 22–3

  radioactive 25–6

  Isua, Greenland 39–40

  J

  Jupiter 65, 85

  formation 24

  moons 2–3, 99–102, 128–9

  orbit 111

  as protection for Earth 126–7

  resonance with Saturn 30

  K

  K stars 116

  Kant, Immanuel 4, 22

  Kelvin scale 20

  Kepler, Johannes 3–4

  Kepler mission 112–13, 126

  Kirschvink, Joe 57

  Klein, Harold ‘Chuck’ 97

  Kuiper Belt objects (KBOs) 107, 108

  L

  labelled release experiment 97

  Lafleur, Laurence 4–5

  Lake Vostok, Antarctica 80–1

  Laplace, Simon-Pierre (Marquis de Laplace) 22

  Laplace resonance 100

  Late Heavy Bombardment 30, 39

  lead isotopes, age 25–6

  Lederberg, Joshua 5

  life

  characteristics 6–9

  origin on Earth 31–43

  precursors 58–9, 65

  light

  bending 113

  cancelling 114

  light years 15

  lightning, creation of organic molecules 32

  Linnaeus, Carolus 66

  lipids 71

  liquid water 10, 11–12, 65, 82–6, 89, 90–6, 99–103, 106, 115–16, 119

  Local Group 15

  Lowell, Percival 4

  M

  M dwarfs 116–17

  MacGregor, Alexander 32

  magnesium-26 atoms 22–3

  magnetic field 56

  on Europa 101

  magnetite 56, 98–9

  main sequence 20–1, 44, 115–16

  Mariner missions to Mars 88–9

  Mars 84–6, 88–99

  in the habitable zone 116

  intelligent life 4

  signs of ancient life 2

  Mars Exploration Rovers 94

  Mars Science Laboratory see Curiosity Rover

  mass extinctions 60–2

  Mayor, Michel 111–12

  medium for biochemical processes 11

  Mercury 84–5

  messenger RNA (mRNA) 73

  metabolism 35, 58, 73–5

  metallicity of stars 117–18

  meteorites 25, 33–4 (see also asteroid impacts)

  age 26

  from Mars 97–9

  methane 55, 90

  atmospheric 46–7

  on Titan 104–6

  Methanopyrus kandleri 80

  Metrodorus 3

  microbes 64–5, 127

  extraterrestrial 2

  gene transfer 77, 79

  survival in extreme heat 29, 79–80

  microbial conjugation 69

  microbial mats 40–1

  microfossils 41–2, 98

  microlensing 113

  Milky Way galaxy 15, 16

  Miller, Stanley 32–3

  Mitchell, Peter 35

  molecular clocks 78–9

  molecules, organic 42–3

  Moon 14

  craters 30

  formation 26–7, 28

  Morrison, Philip 120

  Murchison meteorite 33

  N

  NASA 1, 2, 5, 88–9, 99, 101, 112, 114, 118, 126

  natural selection 8, 75

  Nazca plate, South Pacific 47

  nebular hypothesis 22–3, 25

  negative entropy 7

  Neoproterozoic glaciations 55, 56, 57

  Neptune

  distance 15

  formation 24

&nbs
p; moons 106–8

  orbits 30

  neutrons 19

  Nice model 30

  non-metallic elements 12

  North Pole, Australia 40–1

  nuclear fusion 17–18, 19, 21

  nucleotides 71–3

  O

  oceanic plates 47

  Of the Plurality of Worlds (Whewell) 4

  Oort Cloud 126

  Oparin, Alexander 32

  organic carbon 10, 33–6, 39–40, 42, 50–2, 55, 74

  organic molecules 32–6

  origin of life on Earth 31–43

  Orion Arm of the Milky Way 15

  outflow channels on Mars 91–3

  oxygen 32

  on Europa 102

  on exoplanets 127

  levels 48–53, 54, 55

  precursor for life 58–9

  oxygenation time 59

  ozone layer 52

  P

  PAHs (polycyclic aromatic hydrocarbons) 98

  ‘Pale Blue Dot’ 118

  Paleaoproterozoic glaciations 55, 56, 57

  panspermia 31

  Patterson, Clair 26

  Pauling, Linus 7, 78

  PCR (polymerase chain reaction) technology 80

  Pelagibacter ubique 64–5

  Permian–Triassic mass extinction 61

  Phanerozoic Aeon 54

  photons in the Sun 18

  photosynthesis 49–51

  phylogeny 77–9

  Pikaia 54

  planetary embryos 24

  planetary migration 25

  planetary nebulae 18–19

  planetesimals 24

  plate tectonics 48, 127

  Plato 3

  pluralism 3

  Pluto 108–9

  primeval lead 26

  primordial soup 32

  prokaryotes 67–8

  protein synthesis 77

  proteins 71, 76

  Proterozoic Aeon 55

  proton gradient 35

  Proxima Centauri 15

  Q

  Queloz, Didier 111–12

  R

  racemic mixture 38

  radial velocity method 111

  radioactive isotopes 25–6

  radiogenic heat 101

  Rare Earth Hypothesis 125–7

  recombination 70

  red dwarfs 21

  red giants 18

  red supergiants 19

  redox titration 53

  reductants 52

  ribosomes 68

  in RNA (rRNA) 77

  RNA 36–7, 39, 71–3, 77

  rocky planets 21, 23

  runaway greenhouse effect on Venus 86–7

  runaway limit 87–8

  S

  Sagan, Carl 13, 14, 127

  sample return missions 128–9

  Saturn

  formation 24

  moons 82, 102–6, 129

  orbit 111

  resonance with Jupiter 30

 

‹ Prev