The Emperor of All Maladies
Page 7
Lorenz Heister, an eighteenth-century German physician, once described a mastectomy in his clinic as if it were a sacrificial ritual: “Many females can stand the operation with the greatest courage and without hardly moaning at all. Others, however, make such a clamor that they may dishearten even the most undaunted surgeon and hinder the operation. To perform the operation, the surgeon should be steadfast and not allow himself to become discomforted by the cries of the patient.”
Unsurprisingly, rather than take their chances with such “undaunted” surgeons, most patients chose to hang their fates with Galen and try systemic medicines to purge the black bile. The apothecary thus soon filled up with an enormous list of remedies for cancer: tincture of lead, extracts of arsenic, boar’s tooth, fox lungs, rasped ivory, hulled castor, ground white-coral, ipecac, senna, and a smattering of purgatives and laxatives. There was alcohol and the tincture of opium for intractable pain. In the seventeenth century, a paste of crab’s eyes, at five shillings a pound, was popular—using fire to treat fire. The ointments and salves grew increasingly bizarre by the century: goat’s dung, frogs, crow’s feet, dog fennel, tortoise liver, the laying of hands, blessed waters, or the compression of the tumor with lead plates.
Despite Galen’s advice, an occasional small tumor was still surgically excised. (Even Galen had reportedly performed such surgeries, possibly for cosmetic or palliative reasons.) But the idea of surgical removal of cancer as a curative treatment was entertained only in the most extreme circumstances. When medicines and operations failed, doctors resorted to the only established treatment for cancer, borrowed from Galen’s teachings: an intricate series of bleeding and purging rituals to squeeze the humors out of the body, as if it were an overfilled, heavy sponge.
Vanishing Humors
Rack’t carcasses make ill Anatomies.
—John Donne
In the winter of 1533, a nineteen-year-old student from Brussels, Andreas Vesalius, arrived at the University of Paris hoping to learn Galenic anatomy and pathology and to start a practice in surgery. To Vesalius’s shock and disappointment, the anatomy lessons at the university were in a preposterous state of disarray. The school lacked a specific space for performing dissections. The basement of the Hospital Dieu, where anatomy demonstrations were held, was a theatrically macabre space where instructors hacked their way through decaying cadavers while dogs gnawed on bones and drippings below. “Aside from the eight muscles of the abdomen, badly mangled and in the wrong order, no one had ever shown a muscle to me, nor any bone, much less the succession of nerves, veins, and arteries,” Vesalius wrote in a letter. Without a map of human organs to guide them, surgeons were left to hack their way through the body like sailors sent to sea without a map—the blind leading the ill.
Frustrated with these ad hoc dissections, Vesalius decided to create his own anatomical map. He needed his own specimens, and he began to scour the graveyards around Paris for bones and bodies. At Montfaucon, he stumbled upon the massive gibbet of the city of Paris, where the bodies of petty prisoners were often left dangling. A few miles away, at the Cemetery of the Innocents, the skeletons of victims of the Great Plague lay half-exposed in their graves, eroded down to the bone.
The gibbet and the graveyard—the convenience stores for the medieval anatomist—yielded specimen after specimen for Vesalius, and he compulsively raided them, often returning twice a day to cut pieces dangling from the chains and smuggle them off to his dissection chamber. Anatomy came alive for him in this grisly world of the dead. In 1538, collaborating with artists in Titian’s studio, Vesalius began to publish his detailed drawings in plates and books—elaborate and delicate etchings charting the courses of arteries and veins, mapping nerves and lymph nodes. In some plates, he pulled away layers of tissue, exposing the delicate surgical planes underneath. In another drawing, he sliced through the brain in deft horizontal sections—a human CT scanner, centuries before its time—to demonstrate the relationship between the cisterns and the ventricles.
Vesalius’s anatomical project had started as a purely intellectual exercise but was soon propelled toward a pragmatic need. Galen’s humoral theory of disease—that all diseases were pathological accumulations of the four cardinal fluids—required that patients be bled and purged to squeeze the culprit humors out of the body. But for the bleedings to be successful, they had to be performed at specific sites in the body. If the patient was to be bled prophylactically (that is, to prevent disease), then the purging was to be performed far away from the possible disease site, so that the humors could be diverted from it. But if the patient was being bled therapeutically—to cure an established disease—then the bleeding had to be done from nearby vessels leading into the site.
To clarify this already foggy theory, Galen had borrowed an equally foggy Hippocratic expression, και ιειυ—Greek for “straight into”—to describe isolating the vessels that led “straight into” tumors. But Galen’s terminology had pitched physicians into further confusion. What on earth, they wondered, had Galen meant by “straight into”? Which vessels led “straight into” a tumor or an organ, and which led the way out? The instructions became a maze of misunderstanding. In the absence of a systematic anatomical map—without the establishment of normality—abnormal anatomy was impossible to fathom.
Vesalius decided to solve the problem by systematically sketching out every blood vessel and nerve in the body, producing an anatomical atlas for surgeons. “In the course of explaining the opinion of the divine Hippocrates and Galen,” he wrote in a letter, “I happened to delineate the veins on a chart, thinking that thus I might be able easily to demonstrate what Hippocrates understood by the expression και ιειυ, for you know how much dissension and controversy on venesection was stirred up, even among the learned.”
But having started this project, Vesalius found that he could not stop. “My drawing of the veins pleased the professors of medicine and all the students so much that they earnestly sought from me a diagram of the arteries and also one of the nerves. . . . I could not disappoint them.” The body was endlessly interconnected: veins ran parallel to nerves, the nerves were connected to the spinal cord, the cord to the brain, and so forth. Anatomy could only be captured in its totality, and soon the project became so gargantuan and complex that it had to be outsourced to yet other illustrators to complete.
But no matter how diligently Vesalius pored through the body, he could not find Galen’s black bile. The word autopsy comes from the Greek “to see for oneself”; as Vesalius learned to see for himself, he could no longer force Galen’s mystical visions to fit his own. The lymphatic system carried a pale, watery fluid; the blood vessels were filled, as expected, with blood. Yellow bile was in the liver. But black bile—Galen’s oozing carrier of cancer and depression—could not be found anywhere.
Vesalius now found himself in a strange position. He had emerged from a tradition steeped in Galenic scholarship; he had studied, edited, and republished Galen’s books. But black bile—that glistening centerpiece of Galen’s physiology—was nowhere to be found. Vesalius hedged about his discovery. Guiltily, he heaped even more praise on the long-dead Galen. But, an empiricist to the core, Vesalius left his drawings just as he saw things, leaving others to draw their own conclusions. There was no black bile. Vesalius had started his anatomical project to save Galen’s theory, but, in the end, he quietly buried it.
In 1793, Matthew Baillie, an anatomist in London, published a textbook called The Morbid Anatomy of Some of the Most Important Parts of the Human Body. Baillie’s book, written for surgeons and anatomists, was the obverse of Vesalius’s project: if Vesalius had mapped out “normal” anatomy, Baillie mapped the body in its diseased, abnormal state. It was Vesalius’s study read through an inverted lens. Galen’s fantastical speculations about illnesses were even more at stake here. Black bile may not have existed discernably in normal tissue, but tumors should have been chock-full of it. But none was to be found. Baillie described cancers
of the lung (“as large as an orange”), stomach (“a fungous appearance”), and the testicles (“a foul deep ulcer”) and provided vivid engravings of these tumors. But he could not find the channels of bile anywhere—not even in his orange-size tumors, nor in the deepest cavities of his “foul deep ulcers.” If Galen’s web of invisible fluids existed, then it existed outside tumors, outside the pathological world, outside the boundaries of normal anatomical inquiry—in short, outside medical science. Like Vesalius, Baillie drew anatomy and cancer the way he actually saw it. At long last, the vivid channels of black bile, the humors in the tumors, that had so gripped the minds of doctors and patients for centuries, vanished from the picture.
“Remote Sympathy”
In treating of cancer, we shall remark, that little or no confidence should be placed either in internal . . . remedies, and that there is nothing, except the total separation of the part affected.
—A Dictionary of Practical Surgery, 1836
Matthew Baillie’s Morbid Anatomy laid the intellectual foundation for the surgical extractions of tumors. If black bile did not exist, as Baillie had discovered, then removing cancer surgically might indeed rid the body of the disease. But surgery, as a discipline, was not yet ready for such operations. In the 1760s, a Scottish surgeon, John Hunter, Baillie’s maternal uncle, had started to remove tumors from his patients in a clinic in London in quiet defiance of Galen’s teachings. But Hunter’s elaborate studies—initially performed on animals and cadavers in a shadowy menagerie in his own house—were stuck at a critical bottleneck. He could nimbly reach down into the tumors and, if they were “movable” (as he called superficial, noninvasive cancers), pull them out without disturbing the tender architecture of tissues underneath. “If a tumor is not only movable but the part naturally so,” Hunter wrote, “they may be safely removed also. But it requires great caution to know if any of these consequent tumors are within proper reach, for we are apt to be deceived.”
That last sentence was crucial. Albeit crudely, Hunter had begun to classify tumors into “stages.” Movable tumors were typically early-stage, local cancers. Immovable tumors were advanced, invasive, and even metastatic. Hunter concluded that only movable cancers were worth removing surgically. For more advanced forms of cancer, he advised an honest, if chilling, remedy reminiscent of Imhotep’s: “remote sympathy.”*
Hunter was an immaculate anatomist, but his surgical mind was far ahead of his hand. A reckless and restless man with nearly maniacal energy who slept only four hours a night, Hunter had practiced his surgical skills endlessly on cadavers from every nook of the animal kingdom—on monkeys, sharks, walruses, pheasants, bears, and ducks. But with live human patients, he found himself at a standstill. Even if he worked at breakneck speed, having drugged his patient with alcohol and opium to near oblivion, the leap from cool, bloodless corpses to live patients was fraught with danger. As if the pain during surgery were not bad enough, the threat of infections after surgery loomed. Those who survived the terrifying crucible of the operating table often died even more miserable deaths in their own beds soon afterward.
In the brief span between 1846 and 1867, two discoveries swept away these two quandaries that had haunted surgery, thus allowing cancer surgeons to revisit the bold procedures that Hunter had tried to perfect in London.
The first of these discoveries, anesthesia, was publicly demonstrated in 1846 in a packed surgical amphitheater at Massachusetts General Hospital, less than ten miles from where Sidney Farber’s basement laboratory would be located a century later. At about ten o’clock on the morning of October 16, a group of doctors gathered in a pitlike room at the center of the hospital. A Boston dentist, William Morton, unveiled a small glass vaporizer, containing about a quart of ether, fitted with an inhaler. He opened the nozzle and asked the patient, Edward Abbott, a printer, to take a few whiffs of the vapor. As Abbott lolled into a deep sleep, a surgeon stepped into the center of the amphitheater and, with a few brisk strokes, deftly made a small incision in Abbott’s neck and closed a swollen, malformed blood vessel (referred to as a “tumor,” conflating malignant and benign swellings) with a quick stitch. When Abbott awoke a few minutes later, he said, “I did not experience pain at any time, though I knew that the operation was proceeding.”
Anesthesia—the dissociation of pain from surgery—allowed surgeons to perform prolonged operations, often lasting several hours. But the hurdle of postsurgical infection remained. Until the mid-nineteenth century, such infections were common and universally lethal, but their cause remained a mystery. “It must be some subtle principle contained [in the wound],” one surgeon concluded in 1819, “which eludes the sight.”
In 1865, a Scottish surgeon named Joseph Lister made an unusual conjecture on how to neutralize that “subtle principle” lurking elusively in the wound. Lister began with an old clinical observation: wounds left open to the air would quickly turn gangrenous, while closed wounds would often remain clean and uninfected. In the postsurgical wards of the Glasgow infirmary, Lister had again and again seen an angry red margin begin to spread out from the wound and then the skin seemed to rot from inside out, often followed by fever, pus, and a swift death (a bona fide “suppuration”).
Lister thought of a distant, seemingly unrelated experiment. In Paris, Louis Pasteur, the great French chemist, had shown that meat broth left exposed to the air would soon turn turbid and begin to ferment, while meat broth sealed in a sterilized vacuum jar would remain clear. Based on these observations, Pasteur had made a bold claim: the turbidity was caused by the growth of invisible microorganisms—bacteria—that had fallen out of the air into the broth. Lister took Pasteur’s reasoning further. An open wound—a mixture of clotted blood and denuded flesh—was, after all, a human variant of Pasteur’s meat broth, a natural petri dish for bacterial growth. Could the bacteria that had dropped into Pasteur’s cultures in France also be dropping out of the air into Lister’s patients’ wounds in Scotland?
Lister then made another inspired leap of logic. If postsurgical infections were being caused by bacteria, then perhaps an antibacterial process or chemical could curb these infections. It “occurred to me,” he wrote in his clinical notes, “that the decomposition in the injured part might be avoided without excluding the air, by applying as a dressing some material capable of destroying the life of the floating particles.”
In the neighboring town of Carlisle, Lister had observed sewage disposers cleanse their waste with a cheap, sweet-smelling liquid containing carbolic acid. Lister began to apply carbolic acid paste to wounds after surgery. (That he was applying a sewage cleanser to his patients appears not to have struck him as even the slightest bit unusual.)
In August 1867, a thirteen-year-old boy who had severely cut his arm while operating a machine at a fair in Glasgow was admitted to Lister’s infirmary. The boy’s wound was open and smeared with grime—a setup for gangrene. But rather than amputating the arm, Lister tried a salve of carbolic acid, hoping to keep the arm alive and uninfected. The wound teetered on the edge of a terrifying infection, threatening to become an abscess. But Lister persisted, intensifying his application of carbolic acid paste. For a few weeks, the whole effort seemed hopeless. But then, like a fire running to the end of a rope, the wound began to dry up. A month later, when the poultices were removed, the skin had completely healed underneath.
It was not long before Lister’s invention was joined to the advancing front of cancer surgery. In 1869, Lister removed a breast tumor from his sister, Isabella Pim, using a dining table as his operating table, ether for anesthesia, and carbolic acid as his antiseptic. She survived without an infection (although she would eventually die of liver metastasis three years later). A few months later, Lister performed an extensive amputation on another patient with cancer, likely a sarcoma in a thigh. By the mid-1870s, Lister was routinely operating on breast cancer and had extended his surgery to the cancer-afflicted lymph nodes under the breast.
Antisepsis and an
esthesia were twin technological breakthroughs that released surgery from its constraining medieval chrysalis. Armed with ether and carbolic soap, a new generation of surgeons lunged toward the forbiddingly complex anatomical procedures that Hunter and his colleagues had once concocted on cadavers. An incandescent century of cancer surgery emerged; between 1850 to 1950, surgeons brazenly attacked cancer by cutting open the body and removing tumors.
Emblematic of this era was the prolific Viennese surgeon Theodor Billroth. Born in 1821, Billroth studied music and surgery with almost equal verve. (The professions still often go hand in hand. Both push manual skill to its limit; both mature with practice and age; both depend on immediacy, precision, and opposable thumbs.) In 1867, as a professor in Berlin, Billroth launched a systematic study of methods to open the human abdomen to remove malignant masses. Until Billroth’s time, the mortality following abdominal surgery had been forbidding. Billroth’s approach to the problem was meticulous and formal: for nearly a decade, he spent surgery after surgery simply opening and closing abdomens of animals and human cadavers, defining clear and safe routes to the inside. By the early 1880s, he had established the routes: “The course so far is already sufficient proof that the operation is possible,” he wrote. “Our next care, and the subject of our next studies, must be to determine the indications, and to develop the technique to suit all kinds of cases. I hope we have taken another good step forward towards securing unfortunate people hitherto regarded as incurable.”