After the Centennial Exhibition closed, Lindenthal began working for the Keystone Bridge Company on projects in Chicago and Pittsburgh. This experience, in turn, enabled him to become, in 1879, bridge engineer in Cleveland with the Atlantic & Great Western Railroad. Like many a young engineer of his time, Lindenthal thus followed a peripatetic career among the expanding railroads and bridge-building companies. However, shortly after he turned thirty, he decided to strike out on his own and returned to Pittsburgh to set himself up in private practice. There was plenty of work for a confident and competent engineer; many of the railroads needed help in carrying out surveys, designing and constructing new bridges, and replacing their old wooden-truss bridges with wrought-iron ones more capable of supporting the increasingly heavy locomotives that had come into use. Through such work Lindenthal came into contact with many of the most prominent engineers of the time.
1
Among the long-standing bridge needs in Pittsburgh was a crossing of the Monongahela River to reach the city’s South Side. In the early nineteenth century, that need was provided by ferry service, but in 1810 a bridge charter was obtained, and by 1816 a fine covered wooden bridge was in place. This bridge was the work of Lewis Wernwag, whose earlier Colossus Bridge across the Schuylkill River in Philadelphia has been called “an American engineering superlative.” Although the Colossus had a single clear span of more than 340 feet, which certainly contributed to its being referred to as “the most stunning and visually compelling engineering structure built in the early United States,” the Monongahela bridge had eight much more modest spans of 188 feet each. Fire, however, the fate of many a covered bridge, destroyed the Colossus in 1838, and the wooden superstructure of the Pittsburgh bridge in 1845.
John Roebling thus was given the opportunity to build his first wire-suspension bridge to carry a road as opposed to a canal, and he was able to complete the structure especially quickly by employing the original masonry piers, which had not been harmed in the fire. Though Roebling’s bridge was a great success at first, “in the course of time it became very shaky and loose, and its continuous swaying and creaking convinced every one that it was becoming unsafe for travel.” In fact, the Pittsburgh suspension bridge was so flexible that at times of high water riverboat captains could arrange to have the headroom under one of its eight spans increased by a foot or two by hiring teamsters to position heavy wagons on the spans on either side of the one under which they wished to sail. As roadway traffic grew increasingly heavy, however, the large deflections and vibrations of the bridge became unacceptable, and in 1880 a new suspension bridge with larger spans was commissioned. After the new piers were under construction, the bridge company reconsidered its plans, and looked to something other than a suspension bridge, which “would not be subject to undulations and would be capable of enduring the constantly increasing traffic without limitation of load or speed.” Lindenthal himself may have pointed out the limitations of the suspension-bridge design, and he was invited by the directors and managers of the company to prepare alternative plans. He was subsequently awarded the commission for a new type of bridge of European design.
The Colossus of 1812, a wooden bridge of uncommon span (photo credit 4.1)
The Smithfield Street Bridge in Pittsburgh was Lindenthal’s first important design project. Its principal structural form is now technically known as a lenticular truss, because it is lens-shaped, but was then called a Pauli truss, after its German inventor, Friedrich August von Pauli. The structural principle under which it functions is not unlike that of Isambard Kingdom Brunel’s Saltash Bridge, built across the Tamar River in southwestern England in the 1850s, in which a top tubular member and a suspended chain act in opposing ways to produce a self-equilibrating truss, a variation on the bowstring girder that Eads described. Lindenthal’s adaptation of the Pauli design was of a much lighter construction, however, because of the use of steel in some of its parts, and it showed “the triumph of architectural skill over the gross bulkiness that in the past was considered inseparable from an adequate amount of strength.” In fact, Lindenthal’s “use of steel instead of iron wherever possible was based upon economy as much as anything,” and the decision saved about 5 percent of the bridge’s total cost of $458,000. As originally completed in 1883, the Smithfield Street Bridge carried a single roadway on two main spans of 360 feet each through towering portals with iron-fringed roofs. In 1891, as Lindenthal had made provision for in his original design, a second roadway was added on the already wide piers and a third set of lenticular trusses was erected, thus providing separate roadways for trolley and horse traffic. The original Victorian-style portal motif was retained after widening, though it was changed in 1915 to the less ornate dual-portal cast-steel design that exists on the bridge today, and the Smithfield Street Bridge remains one of Pittsburgh’s most significant landmarks.
The original portal design of Pittsburgh’s Smithfield Street Bridge (photo credit 4.2)
The widened Smithfield Street Bridge, with a less ornate portal (photo credit 4.3)
An etching of the original portal design of the “new bridge at Pittsburg” dominated the front page of Scientific American for September 22, 1883, with a profile of the bridge relegated to a rather small inset engraving. Approaching a bridge like this one from Smithfield Street, or approaching Pittsburgh’s Point Bridge, whose functional towers provided even more imposing portals to the main span, must have been an experience not unlike the one Victorian travelers encountered upon entering the crystal palaces that housed the world’s fairs of the 1850s and 1860s. In fact, Lindenthal had been inspired—if not constrained, as all engineers are—by the style and technology of his own time, which in this case included the buildings for the Centennial fair in Philadelphia.
Among the curious features of the Scientific American story of the new bridge was the opening note that the cover engraving was made “from an excellent photograph by S. V. Albee, for a copy of which we are indebted to Mr. Alex. Y. Lee, C.E., of Pittsburg.” That the engineer Lee’s name was prefixed and suffixed in ways that Albee’s was not suggests the status of the engineer, if not the profession itself, at the time, at least in Scientific American. All the more notable, therefore, is the fact that the “chief engineer, Mr. Gustavus Lindenthal,” who was identified as the source of the particulars about the bridge, had no initials following his name. Evidently, at this early and important stage in his career, not only had Lindenthal not Americanized his given name but, more significantly, he seems not to have conveyed to the reporter that he held any such degree as C.E. Indeed, if anything, Lindenthal seems to have kept the reporter from making such an assumption—as well he might have. Lindenthal’s engineering achievements were and would be his credentials.
In addition to his bridge over the Monongahela, Lindenthal also built one over the Allegheny River, at Seventh Street in Pittsburgh. This was a suspension bridge with four cables that employed not wire but chains composed of eyebars to hold up the roadway. The eyebar chains were suspended in pairs one above another from either side of the towers, and they were interconnected with bracing. Lindenthal may have been influenced in the design by the Point Bridge, completed in Pittsburgh in 1877, which also employed trussed chains to support its roadway. This scheme gave a considerable degree of stiffness to the chain structure, so that the relatively flexible roadway suspended from it was not subject to the degree of deflection and vibration that had been found unsatisfactory in wire suspension bridges. This preference for the use of eyebars rather than wire cables for suspension bridges was to be central in some of the debates Lindenthal would have with other engineers when he became involved in the design of bridges for New York City. Although Lindenthal’s Seventh Street Bridge was to be replaced about a decade before the death of its engineer, it was, along with the Smithfield Street Bridge, one of the major structures erected in the 1880s in America.
Whereas the Brooklyn Bridge, which was completed in 1883, dwarfed Lindenthal’s Pittsbu
rgh bridges and thus captured the imagination of the wider public, his engineering reputation was firmly established, albeit principally in one locality. He had received the Rowland Prize from the American Society of Civil Engineers for his paper on the Monongahela bridge, which he read before the society in 1883, and he was well established as an engineer not only of bridges but also of unique forms of transportation like the inclined railroads used for moving wagons and streetcars along the steep slopes in and around Pittsburgh. Lindenthal, however, appears to have wanted to be more than an important engineer in Pittsburgh or among his colleagues in the American Society of Civil Engineers. One way of gaining wider recognition would be to design and build a bridge larger than the Brooklyn Bridge, then the largest anywhere in the world. If Pittsburgh did not need such large bridges, New York did, and spanning the Hudson River was a problem whose solution everyone would appreciate for its grand achievement. This would place its engineer in the category of a Roebling, if not higher.
2
According to his own account, almost fifty years after the incident, Lindenthal was approached in the fall of 1885 by Samuel Rae, assistant to the vice-president of the Pennsylvania Railroad, regarding the “practicability of a railroad bridge across the Hudson River.” Being a “very able engineer with a penetrating and cautious mind,” Rae also consulted other engineers over the situation at New York:
There was keen competition among the railroad companies for Western traffic. The New York Central Railroad Company advertised a direct entrance, with four tracks, to the heart of Manhattan, while the Pennsylvania Railroad Company and the other railroads terminating in New Jersey were handicapped and had to transfer their passengers across the Hudson River by ferries. A tunnel under the Hudson River had been started at Hoboken, N.J., but it was intended only for small [railroad] cars and local traffic. A larger tunnel for locomotives and standard cars appeared objectionable because of the smoke, which was then a subject of daily complaint in the tunnels of the New York Central Railroad.
As Rae also noted, the situation favored an immense bridge with open-air railroad tracks. In the wake of the Tay Bridge failure, however, the Firth of Forth cantilever design of Fowler and Baker had succeeded the suspension-bridge design of the discredited Bouch, and so a cantilever had also been talked about for the Hudson River, which was about three thousand feet wide and very deep at New York. However, there were serious questions whether a pier would be allowed in the river, and whether the depth of the foundations might be practical. Having “given thought to the matter before,” Lindenthal turned to a suspension-bridge design for New York, and he was convinced that it was technically possible. He reported as much to the Pennsylvania Railroad in the spring of 1886, but Lindenthal’s integrated approach, which included a terminal plan, was prohibitively expensive for a single railroad to finance. Thus the North River Bridge Company, with Lindenthal as chief engineer, was organized in 1887 to seek financial support from several railroads, which would share the bridge and terminal facilities. This seemed like a very promising enterprise, for the otherwise uninterrupted transcontinental tracks then terminated in New Jersey, just across the river from New York, which was the ultimate destination of an enormous volume of passengers and freight. The closest bridge across the Hudson River was at Albany, over 150 miles north. Construction of the cantilever bridge at Poughkeepsie, about sixty miles upriver, had just begun, and ferry service between New Jersey and New York was slow, expensive, and subject to interruption by the weather. Furthermore, there was “annoyance and even danger to the landed passengers on the overcrowded and nasty streets” of New York City, which also housed the offices of Engineering News, the trade journal that was then poised to grow and expand its influence under the vision and energy of its new editor, A. M. Wellington.
Arthur Mellen Wellington, born in Waltham, Massachusetts, in 1847, was the son of a physician. He attended the Boston Latin School, and he learned engineering not through formal education but as an assistant in the Boston office of John B. Henck, himself a self-made engineer. Henck, born in Philadelphia in 1815, was self-educated until he entered Harvard, from which he was to graduate first in his class in 1840. He remained in Cambridge to serve as principal of Hopkins Classical School for a year before moving to the University of Maryland, where he spent a year as a professor of Latin and Greek. After five more years in a similar position at the Germantown Academy, and with a growing family, he returned to Boston to enter the employ of Felton & Parker, Civil Engineers. After a couple of years there, he left to join in a partnership with the engineer William S. Whitwell. Henck eventually set up his own consulting offices in Boston to do general engineering work, which included work on street railways, the Charles River Basin, and the development of Boston’s Back Bay district. In 1865, he became head of the Civil Engineering Department of the newly established Massachusetts Institute of Technology, a position he held until 1881.
Though Wellington was introduced to engineering in Henck’s firm in Boston, the young man did not wish to remain in that city. He took and passed an examination for assistant engineer in the U.S. Navy, but the war ended before he could assume such a position. Wellington then went to Brooklyn, New York, where he joined the Park Department under Frederick Law Olmsted, who with Calvert Vaux had laid out Prospect Park. Wellington apparently had wanderlust, however, and he began to work for a succession of railroads, beginning as a transitman on the Blue Ridge Railroad in South Carolina and working himself up from assistant engineer, principal assistant engineer, and locating engineer to engineer in charge. However, when railroad construction was suddenly stopped during the panic years of 1873 and 1874, Wellington found opportunities for engineers scarce. On his application for membership in the American Society of Civil Engineers, he wrote: “1874–78, was engaged in miscellaneous professional, business and literary occupation more interesting than lucrative and not always particularly interesting.” According to one who knew him, however, he was later to refer to this “period of enforced idleness—so far as idleness was possible to a man of his restless energy—as a blessing in disguise.”
One of the outlets for Wellington’s energy was explicating his experience with railroad construction in books. His first dealt with the very important task of computing how much earth needed to be moved to construct a railroad, a key factor in its cost. The same year this book was published, 1875, Wellington began his “great work, and that by which his fame as an engineer would be established, The Economic Theory of the Location of Railroads.” It was in this work, first published in 1876 as a series of articles in the Railroad Gazette and in 1877 as a book, that Wellington’s famous definition of engineering appeared:
It would be well if engineering were less generally thought of, and even defined, as the art of constructing. In a certain important sense it is rather the art of not constructing: or, to define it rudely, but not inaptly, it is the art of doing well with one dollar, which any bungler can do with two after a fashion.
Wellington’s success as a writer brought him opportunities, and in 1878 he became principal assistant to Charles Latimer, chief engineer of the New York, Pennsylvania & Ohio Railroad. After three years at the “Nypano,” as Latimer’s company was known, Wellington went to Mexico to become first engineer in charge of location and surveys for that country’s national railroad, and later assistant general manager and chief engineer in charge of location. He again grew restless, however, and in 1884 he returned to the United States to become one of the editors of the Railroad Gazette, a position for which his practical experience was invaluable. In January 1887, he left the Gazette to join Engineering News as one of the editors-in-chief and as part owner. According to another of the editors, “the influence of his energy and ability was at once seen in every department of this journal. Within two years its subscription list had more than doubled.”
The juxtaposition of Wellington’s name and the word “energy” was ubiquitous, and he seemed always to be looking for new challe
nges. In the summer of 1892, instead of taking his usual vacation, he stayed in New York and “devoted his leisure to working out some ideas in thermodynamics which had occurred to him years before,” which led to the invention of an efficient engine whose development “became the all-absorbing work of his life, and in his earnestness and zeal all thought of care for his health was forgotten.” As he spent more and more time on his invention, he worked less and less on writing and editing, finally giving up work at Engineering News entirely in May 1894. He soon thereafter embarked on the European rest trip his physicians had advised earlier, but he became acutely ill while in Norway. Though he recovered sufficiently to return to America, his health again failed, and he died in April 1895, from overwork, according to those who knew him most closely.
Gustav Lindenthal could not have helped interacting with Wellington during the course of his editorship at Engineering News, for that journal was to follow closely the great bridge project of which Lindenthal dreamed. Among the first public mentions of a new plan for a New York City bridge over the Hudson River, which was then also known as the North River (as opposed to the South or Delaware River), appears to have been a letter that ran in mid-1887 in a newspaper in Philadelphia, the hometown of the Pennsylvania Railroad. According to Engineering News, and most probably according to editor Wellington, it was “from a man whom [sic] we happen to know is eminently qualified to discuss the subject on the great question of how to eliminate the Hudson river from the New York terminus problem.” Though the letter-writer was not identified, it was almost certainly Lindenthal, whose name in 1887 was quite unlikely to be meaningful to New Yorkers generally, but who may very well have himself fed the letter to Wellington. The subject of the letter was itself of immense interest, however, and it was quoted at length. As in most preliminary reports of engineers setting out a complicated problem and a proposed solution, both were stated concisely:
Engineers of Dreams: Great Bridge Builders and the Spanning of America Page 16