Are the proposed tunnels under the river the proper remedies for the present inconveniences? The projected tunnel is estimated to cost $11,000,000 for two tracks. But two tracks would not begin to accommodate the passenger business of a single railroad, much less all that now terminate on the Jersey side. The Pennsylvania Railroad alone would require four tracks for its steadily increasing business. There should be not less than six tracks, requiring six tunnels.… Six mud tunnels for necessarily slow trains with noisy, cramped terminals, from which dampness could not be excluded for $33,000,000, with no assurance that this amount would be sufficient, and with the certainty of great expenditures for maintenance and repairs, for tunnels must be pumped dry, ventilated, and perhaps thoroughly lighted. This is certainly not the kind of improvement that New York City is most in need [of], and it is not the kind of terminal railroad station which could meet the ever growing demands for greater convenience, safety, comfort and expeditious travelling.
Progress by 1882 on a Hudson River tunnel begun in 1874 (photo credit 4.4)
Imagine now, in a central part of New York City, within a stone’s throw of its greatest avenue, a grand, imposing station, combined with every convenience and comfort of a first-class hotel, with numerous tracks and platforms, accommodating thirty trains at one time, arriving and departing, having all the elevated railroads running their trains directly into this station. Then imagine a massive stone viaduct and lofty columns supporting a six-track roadbed, through and over blocks of buildings to a magnificent bridge over the North river, leaping with a single span over its entire width, without a pier or other obstruction and with a clearance above highest tide of 140 ft., carrying six tracks. Then imagine the six tracks continued on a viaduct and gently descending to the level of the country in New Jersey to connections with all existing railroads and for future lines that will be built. No doubt such imagination may seem fantastic and profitless, though everybody will grant, were it possible to realize such a project, it would be a grand and eminently useful undertaking. But such a project can be realized. It is perfectly feasible and practicable to execute it at less cost than the proposed tunnels with corresponding terminals. The matter has been studied with the greatest possible care for a number of years, and all conditions have been weighed impartially and soberly. There cannot possibly be objections to a bridge spanning North river without a pier in the river and at such a height as to allow the largest steamers to pass under it freely. Bridge engineering has progressed so much that such a large bridge can be built with greater facility to-day than it was possible for the Brooklyn Bridge when it was proposed.
Later that year, Lindenthal prepared a four-page report on this solution of his to the problem, which he copyrighted in 1887 under his own name and had privately printed “not as a publication, but simply for convenience of the promoters of the project and for their exclusive use.” His booklet was entitled The Proposed New York City Terminal Railroad, Including North River Bridge and Grand Terminal Station, in New York City, and the bridge was only one part of the integrated scheme. Six train tracks would be constructed on viaducts “high above the houses” of New York City between a huge bilevel Terminal Station, located “as close as convenient to the principal hotels,” which then meant somewhere above Eighteenth Street and near Sixth Avenue, and the “great North River Bridge,” also referred to as the Hudson River Bridge. Since at the time the Hudson could be considered the “most important water highway in the United States,” any obstruction of it by bridge piers was out of the question. Thus Lindenthal proposed bridging the river “between established pier lines with a single span, 2,850 feet long and 145 feet above high tide.”
Lindenthal’s proposed North River Bridge compared with the Brooklyn, Forth, Poughkeepsie, and Eads bridges, drawn to scale (photo credit 4.5)
As with all responsible engineering proposals, Lindenthal’s report included an estimate of cost and a projection of revenue based on use. Since “surveys, plans and estimates for the entire project” had been made, and since, “except for its magnitude,” the work was “as definite and free from experimental features as any other railroad or bridge project,” Lindenthal must have been confident in his estimate of $23 million for the terminal station, viaducts, bridge, four miles of railroad, and a tunnel through Bergen Hill in New Jersey. When the cost of acquisition of the right of way was added, the total cost of the project was estimated to be $37 million. He projected that eight railroads, including the Pennsylvania, could run their trains directly to the Grand Terminal Station, collectively carrying about sixty thousand passengers per day plus freight. At ten cents each, those passengers alone would bring revenue of over $2 million annually. Because the expenses of operating the system were expected to be covered by the railroads using it, the overall plan looked like a sound moneymaking proposition. Lindenthal dated his report “New York, October, 1887,” and identified himself not with letters such as C.E., denoting a college degree, but with the descriptive declaration “Gustav Lindenthal, Civil Engineer, of Pittsburgh, Pa.,” which he certainly had established himself to be.
Whereas the North River Bridge was only one part of his Grand Terminal plan, it was the component that was to capture the attention of engineers, financiers, and laypersons alike, and to remain Lindenthal’s unrelenting dream for almost five decades. The first formal professional presentation of his bridge plans appears to have occurred at a New York meeting of the American Society of Civil Engineers on the evening of January 4, 1888, which was described in a report in The New York Times the following morning. That the speaker was identified as “Prof. Lindenthal” confirms that he was not then widely known in New York, but the reporter may possibly have used the academic title in the belief that no other was appropriate for the author of “an exhaustive paper on ‘The North River Bridge Problem’ ” whose reading “consumed over three and a half hours,” even though the speaker “confined himself to the salient points of the general project.” Nevertheless, Lindenthal, who may have done little to discourage the professorial image, apparently could not pass up an opportunity to criticize New York’s Brooklyn Bridge, pointing out “enough defects in the East River Bridge to test the faith of any understanding mortal compelled to cross that iron thoroughfare in the course of his business.” There seems little doubt that Lindenthal wanted to better the great achievement of Roebling and to build the greatest bridge in the world. Though he estimated then that it would cost no more than $15 million, he admitted in a report only three months later that the total railroad project might reach $50 million.
In his talk, Lindenthal also argued against a tunnel, which many engineers favored because of the great width of the river. Indeed, a tunnel was the greatest immediate threat to the realization of his dream, and he had concluded his report by citing the clear advantages of a bridge over a tunnel: “Utility, the greatest convenience, plenty of light and air, absence of smoke and noise shall be the leading features.” Even though there had been some success with driving tunnels under water—Marc Brunel’s tunnel under the Thames River in London having been completed over four decades earlier—there remained a general aversion to going underground and under a river in the dark for a mile or so, and bridges were the communication link of choice—if their costs could be afforded. However, a tunnel beneath the Hudson was already under construction, and the competition between tunnels and bridges would remain real and ever-present.
In the meantime, there was growing public interest in an interstate bridge. In late 1887, citizens of New Jersey had asked Congress to authorize and direct the president to appoint a commission of army engineers to look into the matter. This appeared to be the first “public move in a very ambitious project,” according to Engineering News, which was sanguine in spite of the project’s involving an “amount of money, for construction and real estate, that would have made a previous generation stand aghast at its mere mention.” The journal that expressed on its masthead an interest in “all new engineering works or
designs, large or small, of interest from their magnitude, novelty, or originality,” believed in Lindenthal’s dream, however, for the country then had “engineers capable of surmounting all the physical difficulties of the problem, and a people rich enough to pay for it, just as soon as the necessity is really felt for such a structure—and that time approaches.” The necessity was already felt by the likes of Lindenthal, of course, but the time when enough others would feel it was to approach and recede for decades.
To complicate things further, rumor had it that some railroad men were becoming interested in developing plans for a bridge across the Hudson between Steven’s Point, in Hoboken, New Jersey, and somewhere near 42nd Street, on Manhattan Island. Their scheme differed from Lindenthal’s in several respects. For one, it was to carry “wagon-ways, foot-ways, and a cable road system,” in addition to a good number of railroad tracks. For another, it was to be a cantilever bridge, with a maximum span of 780 feet and a headway of 165 feet above the water. The rumor had it that “no engineer has yet made plans, otherwise than to say it was feasible,” which was certainly believable, since the cantilever bridge with multiple 548-foot spans was then under construction over the Hudson at Poughkeepsie and the 1,710-foot spans of the Firth of Forth bridge were nearing completion in Scotland.
Another group of investors was seeking approval for a bridge between Fort Lee, New Jersey, and the section on the New York side of the river known by its Dutch name, Spuyten Duyvil. They wished to place one or more piers in this relatively narrow part of the lower Hudson River, but steamboat operators were already complaining about the piers at Poughkeepsie, where the tides were not nearly so tricky as they were in the river around Spuyten Duyvil, past which tows of sixty to a hundred barges stretched out “anywhere from 200 or 300 feet to nearly a mile” (though the latter estimate was very possibly a zealot’s hyperbole). Thus the stage was set for battles on several fronts, not only between the advocates of tunnels and those of bridges but also between proponents of cantilever and suspension designs, and, as always, between builders of bridges and operators of tugs and ferryboats, with all manner of variation in detail. These battles, not unfairly likened in emotion and intensity to those between the sheep- and cattle-herders of the Old West, would also rage in various forms and at various strategic locations for the next few decades.
True to its promise to give early publication to plans for new engineering works, Engineering News soon ran serially the details of Lindenthal’s design, introducing them as the first item on the first page of the first issue of 1888 with assurances that the cost was “certainly not so formidable an obstacle for to-day as was that of the Brooklyn bridge for 1868,” and that “there is probably no one on either side of the ocean who could be counted on more confidently to deal successfully with the intricate engineering problems involved than Mr. Lindenthal.” His reputation—at least to editors of, and hence to readers of, Engineering News—seems to have been well served by his technical tracts and lectures of earlier years.
A profile diagram, with horizontal scale compressed five times more than that of the vertical, showed the bridge in context, complete with the proposed tunnel through New Jersey’s Bergen Hill and the terminal with two track levels in New York City. An undistorted drawing of the bridge itself appeared above uniform scale drawings of the Brooklyn, Firth of Forth, Poughkeepsie, and Eads bridges. Unlike the chains used for his Seventh Street Bridge in Pittsburgh, Lindenthal proposed braced steel-wire cables enclosed in steel envelopes to “protect them absolutely against rain and weather.” The stiffening trusses of the roadway proper were “principally designed to form the frame work for two large horizontal wind trusses [to] make the bridge safe against the most violent tornadoes,” and the bridge was so designed that four additional railroad tracks could be added “at any time in the future, should it become necessary, making a double deck bridge.” Actually, the first bridge to connect New York and New Jersey was still over forty years away, but it would share a remarkable number of features with Lindenthal’s late-Victorian dream.
Lindenthal’s plans, as published in Engineering News, showed him to have given considerable thought and effort to the great bridge. In addition to describing the technical details, his report kept returning to the architecture of the bridge, especially to the form of the towers, they being “the most prominent feature” of the structure. He acknowledged that the largest suspension bridges then built all had stone towers, but he cited the recent replacement of the cracked stone towers of the Niagara Gorge Suspension Bridge with metal ones, and explained that, “for bridge towers 500 ft. high, wrought iron or low steel is without question the most suitable material.” The towers of his bridge would have columns shaped “for the double purpose of good appearance and to produce initial strains in the bracing between them, by which the rigidity of the towers is enhanced.” The bracing itself was so arranged also to form “a grand and lofty portal” through which the train tracks would pass.
Lindenthal’s New York City Terminal Railroad scheme, drawn with an exaggerated vertical scale and showing the proposed bridge and tunnel through Bergen Hill in New Jersey (photo credit 4.6)
Engineering News was understandably proud to publish a “very liberal extract” from Lindenthal’s paper, which it described as “the first definite description of a work which has at least a very fair chance of becoming the greatest of its kind on this continent, or in the world.” This proponent of great schemes assured its readers that the fact that “some such structure will be built over the North River is as certain as any event still in the future can be,” adding that its prospects were especially good because “it certainly has that solid basis which was so sadly lacking in the Panama canal scheme” that recently had been effectively abandoned by the French. Engineering News concluded its introduction to one of several extracts with optimism, for, “fortunately, engineering difficulties do not by any means vary in direct ratio with magnitude, as the cost does, and there seems to be little in the proposed design which previous experience does not indicate to be entirely practicable.” Unfortunately, editor Wellington and engineer Lindenthal both seem to have underestimated the importance of nontechnical factors, which perhaps vary to an even greater extent with magnitude than does cost. The political and mercantile complications and competitions that accompanied such technically solid great projects as the Eads and Brooklyn bridges were evidently forgotten, at least by some, in the late 1880s in New York.
Lindenthal himself also seems to have worried less about general opposition to the plan than he did about attacks on the aesthetic integrity of his design. Considering the “architectural excellence of the bridge” to be of the “highest importance,” he ridiculed the “hackneyed phrase” that “correctly designed structures have an innate architectural beauty, requiring no adornment, unless perhaps that of a well selected color of paint.” Lindenthal pointed to various bridges (some recently completed) that he saw as embodying the best of engineering and architecture in a single structure:
The graceful suspension in Buda Pesth (without question the finest existing specimen of this class of bridge-architecture), the early bridges in Paris, and a few over the River Rhine were built by engineer-architects, when the field of engineering did not yet justify exclusive devotion to one specialty, to the neglect of other branches of the science of building. But for the taste and stubborn persistence of the late Capt. Eads, the St. Louis bridge would have been built so as to be not the finest specimen of a metal arch-bridge architecture in this country, which it is, but on the plans of the old Omaha bridge, now worn out, and soon fit only for the scrap heap.…
The standpoint of utility has, in our time, become with many almost the only professional point of view for judging of the merit of engineering work, so that the incentive for better things is wanting. A good deal of the blame is with the engineering schools. There is not one text book, to the author’s knowledge, in the English language, on “Bridge Architecture,” and no attempt is
made to teach the students even the rudiments of good designing. It is thought to be of more consequence to furnish an elegant graphical solution of the strains in a polygonal truss, or in the invention of a new formula for the very least weight of iron in a bridge, than to design with a decent regard for pleasing appearance, and for the feeling of fellow men and the opinion of posterity.
An early version of Lindenthal’s Hudson River Bridge design, with the Brooklyn Bridge in the background (photo credit 4.7)
His apparent contempt for engineering schools may perhaps have stemmed partly from his own disappointment or private embarrassment at not having been more formally educated, and partly from the realization, based on his own achievements, that formal education was not a sine qua non for creating good bridge engineering and architecture. That Lindenthal had established himself so well by building significant bridges in Pittsburgh appears to have given him a self-confident, if not arrogant, belief that he was the pre-eminent American bridge engineer, and so entitled to serve as an arbiter of taste for another city’s bridges. He went on to relate anecdotes of being told by a railroad manager how, “every time he hears of a new project for a larger bridge,” he feared another “common hideous looking structure” would go up. When another gentleman spoke to him of “recklessly vulgar structures,” Lindenthal defended engineers by arguing that they “cannot always do as they please and public sentiment must be educated” in appreciating “better things.” He left little doubt that he was referring in particular to a “shameful conglomeration of iron structures as are found in New York and Brooklyn,” which deserved better:
Engineers of Dreams: Great Bridge Builders and the Spanning of America Page 17