Engineers of Dreams: Great Bridge Builders and the Spanning of America
Page 45
Steinman’s design, when drawn to scale, showed the Mackinac Straits Bridge to be larger than the Golden Gate. Though the older structure still retained the record for the longest suspended span between towers, the Mackinac Bridge was actually longer in total suspended span, by almost a thousand feet. When measured from the end of one anchorage to the end of the other, the suspension bridge itself was over eighty-six hundred feet long, and thus surpassed by over two thousand feet the overall length of any suspension bridge extant. Steinman had, in a way, gotten to build the largest suspension bridge on earth. When he wrote, in collaboration with Michigan newspaperman John T. Nevill, the story of the design and construction of the enormous structure, the book was entitled Miracle Bridge at Mackinac. At least in his own mind, Steinman was no doubt likening his crowning achievement to the now dwarfed Brooklyn Bridge of his youth. In another work, the “official picture history” of the new bridge, Steinman wrote of the structure and himself:
The Mackinac Bridge is my crowning achievement—the consummation of a lifetime dedicated to my chosen profession of bridge engineering. As far back as 1893, when I was a newsboy selling papers near the Brooklyn Bridge, I told the other newsboys that someday I was going to build bridges like the famous structure that towered majestically above us. They laughed at me. Now I can point to 400 bridges I have built around the world, and to my masterwork—the Mackinac Bridge—the greatest of all. The realization, one after another, of dreams that seemed hopeless leaves me reverent and humble.
The Mackinac Bridge (photo credit 6.15)
Though Steinman may have had a curious way of expressing his humility, he was no doubt humbled at this time, for it was also clear that the Mackinac Bridge would have to be his “Liberty Bridge,” because the New York Narrows project had in the meantime been given to Ammann by Robert Moses, who was in effect his own banker.
There were still other bridge prizes to be pursued, of course, and Steinman had been pursuing them. Yet, even if he had not been growing old, and even if he had not always acknowledged the essential role of assistants in helping him reach his goals, including lesser ones than his “crowning achievement,” Steinman the chief engineer knew that he could not have succeeded in his quests without a talented and broad-based staff. As Ammann had acknowledged his dependence upon his assistants, so did Steinman at the conclusion of the Mackinac project. Among those who were central to the success of the enterprise were R. M. Boynton, C. H. Gronquist, and J. London. Boynton, a 1920 civil-engineering graduate of the University of Maine, had been with Steinman since 1928 and was responsible for the substructure of the bridge. Carl Gronquist, who received B.S., M.S., and C.E. degrees from Rutgers University, joined Steinman after receiving the master’s degree in 1927, and was in charge of the superstructure. London, who received both his B.S. and his C.E. degree from the City College of New York in the early 1920s, had joined Steinman in 1922 and had responsibility for the approaches, lighting, and equipment associated with the Mackinac Bridge. Together, they represented a new generation of engineer, one that came out of the many newer American public schools of engineering that in the early twentieth century overshadowed the once dominant position of the European tradition and private schools like Rensselaer Polytechnic Institute.
In 1960, Steinman added the names of three partners to his firm’s name. Whereas he had practiced as D. B. Steinman since the death of Holton Robinson, now the consulting firm would be known as Steinman, Boynton, Gronquist & London. The new firm needed a new brochure, of course, and in it a brief background on the organization, with no false modesty, stated its credentials: “Since 1921, the members of the firm have been designers or consultants on over 400 bridges on five continents, many of them being among the most renowned bridges in the world.” The “record cost” of the Mackinac Bridge, almost $100 million, was described as more than that of the George Washington and Golden Gate bridges combined. This “artistically and scientifically … outstanding” structure, the “longest suspension bridge in the world,” was further described in more personal terms: “Here is Dr. Steinman’s and his firm’s crowning achievement. It represents the attainment of a new goal of perfect aerodynamic stability, never before attained or even approximated in any prior suspension bridge design.”
Not only past achievements were pictured in the consulting firm’s brochure. In a foreword signed by Steinman, he wrote of “the great spans of tomorrow,” and it was one of these especially that had recaptured his imagination. As early as 1950, the Italian Steel Institute had retained Steinman to prepare plans for a crossing of the two-mile-wide Strait of Messina, between Sicily and the Italian mainland. The legendary passage through which Ulysses had to sail between Scylla and Charybdis, the strait is the site of the occasional mirage known as the fata morgana. How the poet Steinman must have longed for the commission, and the occasion to commemorate its achievement in verse. There was no time for poetry when courting engineering commissions, however, and the bridge sketched in the brochure was described as having a record five-thousand-foot main span, stiffened against railroad traffic, aerodynamic forces, and earthquakes. According to the consulting firm’s brochure, commencement of construction awaited only the financing of the $150 million cost.
The Strait of Messina bridge design proposed by David Steinman (photo credit 6.16)
Perhaps it was the adrenaline that the Mackinac commission released that caused Steinman to produce a new outpouring of articles on bridges and aerodynamics in the early-to-mid-1950s, but it was the bridge across the Strait of Messina that became his new sought-after achievement. Steinman knew that, no matter how much he spoke of the total suspended span or the eighty-three hundred feet between abutments or the five-mile overall length of the roadway of the Mackinac Bridge, the main suspended span was the technological achievement by which records were really kept, and the Mackinac’s was only thirty-eight hundred feet long, a full four hundred feet less than that of the Golden Gate, and less still than that of Ammann’s Verrazano-Narrows Bridge would be. If Steinman really wanted to hold the record, he had to be identified with a bridge like the one he had proposed across the Strait of Messina.
Among the articles Steinman had written, more than incidentally promoting his new dream bridge, was one entitled “Suspension Bridges: The Aerodynamic Problem and Its Solution.” This appeared in 1954 in American Scientist, the journal of Sigma Xi, the research honor society that had been founded early in the century as a scientific counterpart to Phi Beta Kappa. In this comprehensive piece, renderings of the Mackinac and Strait of Messina bridges, drawn from the same perspective, appear on facing pages. There is a strong physical resemblance between the two bridges’ towers, and the clear implication had to be, if the one, why not the other. There were certainly no technical impediments in Steinman’s mind, as his article clearly argued. He showed how he had physically checked with stays the aerodynamic motion of his Deer Isle Bridge, without having to resort to a retrofitted truss, and he pointed out how he had solved the mathematical problem of understanding what it took to control aerodynamic motion in bridges on the drawing board. Forty years after its appearance, the paper is remembered by engineers and scientists alike as having been a definitive resolution of the problem of suspension-bridge oscillations, both practically and theoretically, in spite of a renewed interest in 1990 in revisiting and reanalyzing the Tacoma Narrows collapse on the occasion of its fiftieth anniversary. Another article by Steinman, a historical perspective on bridges generally but with a special emphasis on suspension bridges and the aerodynamic problem, had appeared in Scientific American. It concluded with a discussion of bridges of the future, of which the Strait of Messina span was the clear successor to the one across the Straits of Mackinac.
7
Perhaps those whose dreams of bridges go to the lengths that Steinman’s did cannot ever stop dreaming of bettering themselves. The Messina bridge project was to be left on Steinman’s drawing board, however, when he died in 1960. He had become ill ba
rely six months after establishing the partnership that would associate his name with projects well beyond his death. His obituary in The New York Times remembered him as the designer of the Henry Hudson Bridge, the work he had effectively completed as a student at Columbia, as well as of “more than 400 others spanning rivers and harbors in many parts of the world.” An editorial in that paper called his “greatest success” the bridge in Michigan that had come to be recognized as the “world’s longest suspension bridge” and to be called affectionately “Big Mack.” Ironically, the hometown paper incorrectly spoke of Steinman as having been “born on the Lower East Side four years before Brooklyn Bridge was opened on May 24, 1883,” which would have made his year of birth the same as Ammann’s. The paper did not misspeak, however, when it referred to Steinman’s belief that a bridge could be “a poem stretched across a river” and that “bridges are an index to civilization.” Though the editorial recognized Steinman to have been a poet who wrote in steel, it by no means remembered him only as a dreamer: “He helped in the negotiations and the rivalries that must proceed—sometimes it seems endlessly—before a great bridge is built.” It should not diminish Steinman’s accomplishments to say that this prosaic praise might also have been written of any of his few significant rivals and peers.
But if the popular press remembered Steinman affectionately, only allowing that “rivalries” were a part of bridge building, the engineering press did not recall him so warmly. Civil Engineering, the magazine of the American Society of Civil Engineers, treated his death as but another bit of society news, albeit with a picture of an aged Steinman holding a drawing of his last dream, the Messina Strait bridge. He was acknowledged to be “regarded as [sic] one of the great engineers of the twentieth century,” but the reserved tone of the notice of the death of the “famous bridge builder,” who had been a member of the society for half a century, only hinted at the legacy Steinman had left behind in the profession he so loved. Unlike Ammann, who had received the society’s highest formal recognition, Steinman seems to have been thought of as just another dues-paying member, albeit one of some notable accomplishment who had been active for fifty years. In fact, he had been the promoter of what was seen as a competing organization, the National Society of Professional Engineers. Given his aspirations toward honors and awards, he may have been disappointed at not being made an honorary member, or at least a fellow, of the civil-engineering society. He would be further shunned by having not so much as an abstract of a memoir of him published in the society’s Transactions. But such mean-spiritedness had been foreshadowed.
A year before he died, Engineering News-Record had profiled Steinman in the same “Men and Jobs” series in which its editors had profiled Ammann a year earlier. The contrast of the two treatments is striking. Ammann’s was titled “An Artist in Steel Design,” and it portrayed the “unobtrusive looking man” as one who disliked attention and preferred to stay at home rather than go to parties that served “no particular purpose.” Instead of being a loner, however, he was a firm “believer in the conference table and in amalgamation of talents to do a job.” When asked by the interviewer to describe the “typical” engineer’s personality, Ammann replied:
We may lack glamor and sparkle. We might even be considered dull by many people, but I don’t believe it. I think that the fact that we are dealing so intensely with concepts outside the layman’s ken makes us often not understood by them.
This is actually the engineer’s number one problem today. He must learn somehow to communicate more easily—both with his colleagues and with the public. Most of us [engineers], when we have something to say, will qualify our statement to death until we’re bogged down and the point is lost to all but those who have the patience to dig to see what we really mean. Even then, one is not often sure.
Ammann suggested teaching more communication skills to student engineers as a way of correcting the problem, but neither he nor the editor who was interviewing him seemed to want to pursue directly what role fundamental traits of personality may have to do with it all. Rather, the interview continued with a digression into Ammann’s keen sense of office detail, which was reported to be exemplified by his knowing “most of his employees by name and personality,” and by the fact that he “scanned carefully” everything that left the office.
Among the things reported to ruffle Ammann’s feathers was any expression of admiration for the “rugged individualist,” because “a man like that is nothing but an egotist.” Ammann believed that “People are meant to work together. Nobody wants to see a one-man show.” There can be little doubt that Ammann’s rival, the rugged individualist and egotist David Steinman, was a target of these remarks. It was Steinman, more than Ammann, who had reached out to and communicated with the public with an effective glamour and sparkle.
Steinman’s profile, perhaps at his instigation and after an appeal for equal time, appeared under the title of the magazine’s cover story, “What Measure for This Man?” He was described as having had a full life, “full of disappointments and frustrations as well as of recognition and financial rewards.” By his own admission, his great disappointment was being denied “the focus of my life ambition,” the Liberty Bridge he had spent thirty years promoting. Engineering News-Record, which had been so much an interpreter of the profession, surmised, moreover, that the “loss of affection among contemporaries may be the greatest of his sacrifices,” for he was a man who wanted “very much to make friends” but whose personality had not been one “to take or leave.”
To its own rhetorical question of what Steinman’s life added up to, the magazine responded with more questions. Would it be “the mighty Mackinac Bridge”; the book about the Roeblings, The Builders of the Bridge; the book for juveniles, Famous Bridges of the World; the poems; the National Society of Professional Engineers, which he founded; his tireless efforts for passage of registration laws for engineers; or his later “speech-making campaign when he barnstormed the country” explaining the collapse of the Tacoma Narrows Bridge, which he believed he could have saved? It was this last effort especially that did “not endear him to his contemporaries who had a part in the investigation” of the failure that was so embarrassing to the profession.
According to Steinman, “All my competitors were on a committee to investigate the collapse and I was scrupulously left out.” He also allowed that “channels of information” were closed to him, as were “channels of publication,” but the anonymous reporter did not feel the engineer said these things with bitterness, only “somewhat sadly.” Indeed, one of Steinman’s distinguishing traits may have been his willingness to discuss openly engineering embarrassments for the good of the entire profession. In 1929, for example, when heat-treated wire was showing signs of weakness in the cables of his Mount Hope Bridge in Rhode Island and the Ambassador Bridge in Detroit, both then under construction, the cables were dismantled and replaced with conventional cold-drawn wire. Rather than helping the incidents to be forgotten, as some thought human nature and professional pride might dictate, Steinman “distinguished himself by helping to record fully and promptly the findings of this unfortunate experience.”
But it was the strictly personal qualities of the man, more separated from professional practice than issues of the cables or instabilities of bridges, that had finally to be addressed in a profile. In the year since Ammann had blasted the rugged individualist in the same department of Engineering News-Record, Steinman had added the names of other engineers to his own, and his firm was running easily without “The Doctor,” whose identity had sometimes seemed to be one with it. His relationship to his employees was nonetheless reported to be perhaps “an outstanding facet” of his personality: “They call him generous, thoughtful, receptive, ethical, quixotic, brilliant, warm, human, a team man and character-builder.” He, for his part, considered all of them his “brother engineers.”
Steinman’s methods of doing business were perhaps affected by his “quixotic” qualit
y. He admitted to having “put off earnings to fight causes,” and thus it was not surprising that the practice “barely broke even most years until the Fifties,” when the Mackinac Bridge project was realized. His methods of “promoting professional engagements” were considered one likely legacy of his career, for “he would do considerable engineering on a proposed bridge in hopes of some day getting to design it in detail and see it built.” His Liberty Bridge was among a list of forty other such proposed bridges. During the 1920s, Steinman had traveled everywhere around the country looking for prospective sites for toll bridges to design, but he later speculated on why he found it difficult to get very far with state highway departments: “I didn’t know and don’t want to know the political ropes.”
Though Steinman may not have known or even wanted to know the politics of bridge building, he did seem to have an instinct for the politics of self-promotion. Perhaps the gentle-looking man who was, like so many builders of large bridges, slight in physical stature, worked hard at promoting his own accomplishments because he had repudiated the more modest but nevertheless essential ones of his parents. Or perhaps he felt that competing for publicity and recognition of a less tangible kind was not quite the same as fighting tooth and nail for a bridge commission. Whatever his motivation, however, Steinman was a notorious self-promoter, leading at least one reporter to state that “perhaps his greatest contribution will some day be judged to be his public relations effort.”