Book Read Free

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory

Page 22

by Brian Greene


  The lowest image in the figure shows the apparent structure of space—the ordinary world around us—on familiar distance scales such as meters. These distances are represented by the largest set of grid lines. In the subsequent images, we zoom in on the fabric of space by focusing our attention on ever smaller regions, which we sequentially magnify in order to make them easily visible. At first as we examine the fabric of space on shorter distance scales, not much happens; it appears to retain the same basic form as it has on larger scales, as we see in the first three levels of magnification. However, as we continue on our journey toward the most microscopic examination of space—the fourth level of magnification in Figure 8.3—a new, curled-up, circular dimension becomes apparent, much like the circular loops of thread making up the pile of a tightly woven piece of carpet. Kaluza and Klein suggested that the extra circular dimension exists at every point in the extended dimensions, just as the circular girth of the garden hose exists at every point along its unfurled, horizontal extent. (For visual clarity, we have drawn only an illustrative sample of the circular dimension at regularly spaced points in the extended dimensions.) We show a close-up of the Kaluza-Klein vision of the microscopic structure of the spatial fabric in Figure 8.4.

  The similarity with the garden hose is manifest, although there are some important differences. The universe has three large, extended space dimensions (only two of which we have actually drawn), compared with the garden hose's one, and, more important, we are now describing the spatial fabric of the universe itself, not just an object, like the garden hose, that exists within the universe. But the basic idea is the same: Like the circular girth of the garden hose, if the additional curled-up, circular dimension of the universe is extremely small, it is much harder to detect than the manifest, large, extended dimensions. In fact, if its size is small enough, it will be beyond detection by even our most powerful magnifying instruments. And, of utmost importance, the circular dimension is not merely a circular bump within the familiar extended dimensions as the illustration might lead you to believe. Rather, the circular dimension is a new dimension, one that exists at every point in the familiar extended dimensions just as each of the up-down, left-right, and back-forth dimensions exists at every point as well. It is a new and independent direction in which an ant, if it were small enough, could move. To specify the spatial location of such a microscopic ant, we would need to say where it is in the three familiar extended dimensions (represented by the grid) and also where it is in the circular dimension. We would need four pieces of spatial information; if we add in time, we get a total of five pieces of spacetime information—one more than we normally would expect.

  And so, rather surprisingly, we see that although we are aware of only three extended spatial dimensions, Kaluza's and Klein's reasoning shows that this does not preclude the existence of additional curled-up dimensions, at least if they are very small. The universe may very well have more dimensions than meet the eye.

  How small is "small?" Cutting-edge equipment can detect structures as small as a billionth of a billionth of a meter. So long as an extra dimension is curled up to a size less than this tiny distance, it is too small for us to detect. In 1926 Klein combined Kaluza's initial suggestion with some ideas from the emerging field of quantum mechanics. His calculations indicated that the additional circular dimension might be as small as the Planck length, far shorter than experimental accessibility. Since then, physicists have called the possibility of extra tiny space dimensions Kaluza-Klein theory.2

  Comings and Goings on a Garden Hose

  The tangible example of the garden hose and the illustration in Figure 8.3 are meant to give you some sense of how it is possible that our universe has extra spatial dimensions. But even for researchers in the field, it is quite difficult to visualize a universe with more than three spatial dimensions. For this reason, physicists often hone their intuition about these extra dimensions by contemplating what life would be like if we lived in an imaginary lower- dimensional universe—following the lead of Edwin Abbott's enchanting 1884 classic popularization Flatland3—in which we slowly realize that the universe has more dimensions than those of which we are directly aware. Let's try this by imagining a two-dimensional universe shaped like our garden hose. Doing so requires that you relinquish an "outsider's" perspective that views the garden hose as an object in our universe. Rather, you must leave the world as we know it and enter a new Garden-hose universe in which the surface of a very long garden hose (you can think of it as being infinitely long) is all there is as far as spatial extent. Imagine that you are a tiny ant living your life on its surface.

  Let's start by making things even a little more extreme. Imagine that the length of the circular dimension of the Garden-hose universe is very short—so short that neither you nor any of your fellow Hose-dwellers are even aware of its existence. Instead, you and everyone else living in the Hose universe take one basic fact of life to be so evident as to be beyond questioning: the universe has one spatial dimension. (If the Garden-hose universe had produced its own ant-Einstein, Hose-dwellers would say that the universe has one spatial and one time dimension.) In fact, this feature is so self-evident that Hose-dwellers have named their home Lineland, directly emphasizing its having one spatial dimension.

  Life in Lineland is very different from life as we know it. For example, the body with which you are familiar cannot fit in Lineland. No matter how much effort you may put into body reshaping, one thing you can't get around is that you definitely have length, width, and breadth—spatial extent in three dimensions. In Lineland there is no room for such an extravagant design. Remember, although your mental image of Lineland may still be tied to a long, threadlike object existing in our space, you really need to think of Lineland as a universe—all there is. As an inhabitant of Lineland you must fit within its spatial extent. Try to imagine it. Even if you take on an ant's body, you still will not fit. You must squeeze your ant body to look more like a worm, and then further squeeze it until you have no thickness at all. To fit in Lineland you must be a being that has only length.

  Imagine further that you have an eye on each end of your body. Unlike your human eyes, which can swivel around to look in all three dimensions, your eyes as a Linebeing are forever locked into position, each staring off into the one-dimensional distance. This is not an anatomical limitation of your new body. Instead, you and all other Linebeings recognize that since Lineland has but one dimension, there simply isn't another direction in which your eyes can look. Forward and backward exhaust the extent of Lineland.

  We can try to go further in imagining life in Lineland, but we quickly realize that there's not much more to it. For instance, if another Linebeing is on one or the other side of you, picture how it will appear: you will see one of her eyes—the one facing you—but unlike human eyes, hers will be a single dot. Eyes in Lineland have no features and display no emotion—there is just no room for these familiar characteristics. Moreover, you will be forever stuck with this dotlike image of your neighbor's eye. If you wanted to pass her and explore the realm of Lineland on the other side of her body, you would be in for a great disappointment. You can't pass by her. She is fully "blocking the road," and there is no space in Lineland to go around her. The order of Linebeings as they are sprinkled along the extent of Lineland is fixed and unchanging. What drudgery.

  A few thousand years after a religous epiphany in Lineland, a Linebeing named Kaluza K. Line offers some hope for the downtrodden Linedwellers. Either from divine inspiration or from the sheer exasperation of years of staring at his neighbor's dot-eye, he suggests that Lineland may not be one-dimensional after all. What if, he theorizes, Lineland is actually two-dimensional, with the second space dimension being a very small circular direction that has, as yet, evaded direct detection because of its tiny spatial extent. He goes on to paint a picture of a vastly new life, if only this curled-up space direction would expand in size—something that is at least possible according to the
recent work of his colleague, Linestein. Kaluza K. Line describes a universe that amazes you and your comrades and fills everyone with hope—a universe in which Linebeings can move freely past one another by making use of the second dimension: the end of spatial enslavement. We realize that Kaluza K. Line is describing life in a "thickened" Garden-hose universe.

  In fact, if the circular dimension were to grow, "inflating" Lineland into the Garden-hose universe, your life would change in profound ways. Take your body, for example. As a Linebeing, anything between your two eyes constitutes the interior of your body. Your eyes, therefore, play the same role for your linebody as skin plays for an ordinary human body: They constitute the barrier between the inside of your body and the outside world. A doctor in Lineland can access the interior of your linebody only by puncturing its surface—in other words, "surgery" in Lineland takes place through the eyes.

  But now imagine what happens if Lineland does, à la Kaluza K. Line, have a secret, curled-up dimension, and if this dimension expands to an observably large size. Now one Linebeing can view your body at an angle and thereby directly see into its interior, as we illustrate in Figure 8.5. Using this second dimension, a doctor can operate on your body by reaching directly inside your exposed interior. Weird! In time, Linebeings, no doubt, would develop a skinlike cover to shield the newly exposed interior of their bodies from contact with the outside world. And moreover, they would undoubtedly evolve into beings with length as well as breadth: Flatbeings sliding along the two-dimensional Garden-hose universe as illustrated in Figure 8.6. If the circular dimension were to grow very large indeed, this two-dimensional universe would be closely akin to Abbott's Flatland—an imaginary two-dimensional world Abbott suffused with a rich cultural heritage and even a satirical caste system based upon one's geometrical shape. Whereas it's hard to imagine anything interesting happening in Lineland—there is just not enough room—life on a Garden-hose becomes replete with possibilities. The evolution from one to two observably large space dimensions is dramatic.

  And now the refrain: Why stop there? The two-dimensional universe might itself have a curled-up dimension and therefore secretly be three-dimensional. We can illustrate this with Figure 8.4, so long as we recognize that we are now imagining that there are only two extended space dimensions (whereas when we first introduced this figure we were imagining the flat grid to represent three extended dimensions). If the circular dimension should expand, a two-dimensional being would find itself in a vastly new world in which movement is not limited just to left-right and back-forth along the extended dimensions. Now, a being can also move in a third dimension—the "up-down" direction along the circle. In fact, if the circular dimension were to grow to a large enough size, this could be our three-dimensional universe. We do not know at present whether any of our three spatial dimensions extends outward forever, or in fact curls back on itself in the shape of a giant circle, beyond the range of our most powerful telescopes. If the circular dimension in Figure 8.4 got big enough—billions of light-years in extent—the figure could very well be a drawing of our world.

  But the refrain replays: Why stop there? This takes us to Kaluza's and Klein's vision: that our three-dimensional universe might have a previously unanticipated curled-up fourth spatial dimension. If this striking possibility, or its generalization to numerous curled-up dimensions (to be discussed shortly) is true, and if these curled-up dimensions were themselves to expand to a macroscopic size, the lower-dimensional examples discussed make it clear that life as we know it would change immensely.

  Surprisingly, though, even if they should always stay curled up and small, the existence of extra curled-up dimensions has profound implications.

  Unification in Higher Dimensions

  Although Kaluza's 1919 suggestion that our universe might have more spatial dimensions than those of which we are directly aware was a remarkable possibility in its own right, something else really made it compelling. Einstein had formulated general relativity in the familiar setting of a universe with three spatial dimensions and one time dimension. The mathematical formalism of his theory, however, could be extended fairly directly to write down analogous equations for a universe with additional space dimensions. Under the "modest" assumption of one extra space dimension, Kaluza carried out the mathematical analysis and explicitly derived the new equations.

  He found that in the revised formulation the equations pertaining to the three ordinary dimensions were essentially identical to Einstein's. But because he included an extra space dimension, not surprisingly Kaluza found extra equations beyond those Einstein originally derived. After studying the extra equations associated with the new dimension, Kaluza realized that something amazing was going on. The extra equations were none other than those Maxwell had written down in the 1880s for describing the electromagnetic force! By adding another space dimension, Kaluza had united Einstein's theory of gravity with Maxwell's theory of light.

  Before Kaluza's suggestion, gravity and electromagnetism were thought of as two unrelated forces; nothing had even hinted that there might be a relation between them. By having the bold creativity to imagine that our universe has an additional space dimension, Kaluza suggested that there was a deep connection, indeed. His theory argued that both gravity and electromagnetism are associated with ripples in the fabric of space. Gravity is carried by ripples in the familiar three space dimensions, while electromagnetism is carried by ripples involving the new, curled-up dimension.

  Kaluza sent his paper to Einstein, and at first Einstein was quite intrigued. On April 21, 1919, Einstein wrote back to Kaluza and told him that it had never occurred to him that unification might be achieved "through a five-dimensional [four space and one time] cylinder-world." He added, "At first glance, I like your idea enormously."4 About a week later, though, Einstein wrote Kaluza again, this time with some skepticism: "I have read through your paper and find it really interesting. Nowhere, so far, can I see an impossibility. On the other hand, I have to admit that the arguments brought forward so far do not appear convincing enough."5 But then, on October 14, 1921, more than two years later, Einstein wrote to Kaluza again, having had time to digest Kaluza's novel approach more fully: "I am having second thoughts about having restrained you from publishing your idea on a unification of gravitation and electricity two years ago.... If you wish, I shall present your paper to the academy after all."6 Belatedly, Kaluza had received the master's stamp of approval.

  Although it was a beautiful idea, subsequent detailed study of Kaluza's proposal, augmented by Klein's contributions, showed that it was in serious conflict with experimental data. The simplest attempts to incorporate the electron into the theory predicted relations between its mass and its charge that were vastly different from their measured values. Because there did not seem to be any obvious way of getting around this problem, many of the physicists who had taken notice of Kaluza's idea lost interest. Einstein and others continued, now and then, to dabble with the possibility of extra curled-up dimensions, but it quickly came to be an enterprise on the outskirts of theoretical physics.

  In a real sense, Kaluza's idea was way ahead of its time. The 1920s marked the start of a bull market for theoretical and experimental physics concerned with understanding the basic laws of the microworld. Theorists had their hands full as they sought to develop the structure of quantum mechanics and quantum field theory. Experimentalists had the detailed properties of the atom as well as numerous other elementary material constituents to discover. Theory guided experiment and experiment refined theory as physicists pushed forward for half a century, ultimately to reveal the standard model. It is no wonder that speculations on extra dimensions took a distant backseat during these productive and heady times. With physicists exploring powerful quantum methods, the implications of which gave rise to experimentally testable predictions, there was little interest in the mere possibility that the universe might be a vastly different place on length scales far too small to be probed by
even the most powerful of instruments.

  But sooner or later, bull markets lose steam. By the late 1960s and early 1970s the theoretical structure of the standard model was in place. By the late 1970s and early 1980s many of its predictions had been verified experimentally, and most particle physicists concluded that it was just a matter of time before the rest were confirmed as well. Although a few important details remained unresolved, many felt that the major questions concerning the strong, weak, and electromagnetic forces had been answered.

  The time was finally ripe to return to the grandest question of all: the enigmatic conflict between general relativity and quantum mechanics. The success in formulating a quantum theory of three of nature's forces emboldened physicists to try to bring the fourth, gravity, into the fold. Having pursued numerous ideas that all ultimately failed, the mind-set of the community became more open to comparatively radical approaches. After being left for dead in the late 1920s, Kaluza-Klein theory was resuscitated.

  Modern Kaluza-Klein Theory

  The understanding of physics had significantly changed and substantially deepened in the six decades since Kaluza's original proposal. Quantum mechanics had been fully formulated and experimentally verified. The strong and the weak forces, unknown in the 1920s, had been discovered and were largely understood. Some physicists suggested that Kaluza's original proposal had failed because he was unaware of these other forces and had therefore been too conservative in his revamping of space. More forces meant the need for even more dimensions. It was argued that a single new, circular dimension, although able to show hints of a connection between general relativity and electromagnetism, was just not enough.

 

‹ Prev