Book Read Free

The Essential Galileo

Page 20

by Galilei, Galileo, Finocchiaro, Maurice A.


  Furthermore, how futile it is to argue for the plausibility of this or that opinion simply from the large number of followers may be easily inferred from this: no one follows this opinion who did not previously believe the contrary; but instead you will not find even a single person who, after holding this opinion, will pass to the other one, regardless of any discussion he hears; consequently, one may judge, even if he does not understand the reasons for one side or for the other, that probably the demonstrations for the earth’s motion are much13 stronger than those for the other side. But I shall say more, namely, that if the probability of the two positions were something to be won by ballot, I would be willing to concede defeat when the opposite side had one more vote than I out of one hundred; not only that, but I would be willing to agree that every individual vote of the opponents was worth ten of mine, as long as the decision was made by persons who had perfectly heard, intimately penetrated, and subtly examined all the reasons and evidence of the two sides; indeed it is reasonable to expect that such would be those who cast the votes. Hence this opinion is not ridiculous and contemptible, but somewhat shaky is the position of whoever wanted to capitalize on the common opinion of the many who have not accurately studied these authors. What then should we say of the noises and the idle chatter of someone who has not understood even the first and simplest principles of these doctrines, and who is not qualified to understand them ever? What importance should we give him?

  Consider now those who persist in wanting to say that as an astronomer Copernicus considered the earth’s motion and the sun’s stability only a hypothesis which is more adequate to save celestial appearances and to calculate the motions of planets, but that he did not believe it to be true in reality and in nature. With all due respect, these people show that they have been too prone to believe the word of someone who speaks more out of whim than out of experience with Copernicus’ book or with understanding the nature of this business. For this reason they talk about it in a way that is not altogether right.

  [355] First, limiting ourselves to general considerations, let us see his preface to Pope Paul III, to whom he dedicates the work. We shall find, to begin with, as if to comply with what they call the astronomer’s task, that he had done and completed the work in accordance with the hypothesis of the prevailing philosophy and of Ptolemy himself, so that there was in it nothing lacking. But then, taking off the clothes of a pure astronomer and putting on those of a contemplator of nature, he undertook to examine whether this astronomical assumption already introduced, which was completely satisfactory regarding the calculations and the appearances of the motions of all planets, could also truly happen in the world and in nature. He found that in no way could such an arrangement of parts exist: although each by itself was well-proportioned, when they were put together the result was a very monstrous chimera. And so he began to investigate what the system of the world could really be in nature, no longer for the sole convenience of the pure astronomer, whose calculations he had complied with, but in order to come to an understanding of such a noble physical problem; he was confident that, if one had been able to account for mere appearances by means of hypotheses which are not true, this could be done much better by means of the true and physical constitution of the world. Having at his disposal a very large number of physically true and real observations of the motions of the stars (and without this knowledge it is wholly impossible to solve the problem), he worked tirelessly in search of such a constitution. Encouraged by the authority of so many great men, he examined the motion of the earth and the stability of the sun. Without their encouragement and authority, by himself either he would not have conceived the idea, or he would have considered it a very great absurdity and paradox, as he confesses to have considered it at first. But then, through long sense observations, favorable results, and very firm demonstrations, he found it so consonant with the harmony of the world that he became completely certain of its truth. Hence this position is not introduced to satisfy the pure astronomer, but to satisfy the necessity of nature.

  Furthermore, Copernicus knew and wrote in the same place that publishing this opinion would have made him look insane to the numberless followers of current philosophy, and especially to each and every [356] layman. Nevertheless, urged by the requests of the Cardinal of Capua14 and the Bishop of Kulm,15 he published it. Now, would he not have been really mad if, considering this opinion physically false, he had published that he believed it to be true, with the certain consequence that he would be regarded as a fool by the whole world? And why would he not have declared that he was using it only as an astronomer, but that he denied it as a philosopher, thus escaping the universal label of foolishness, to the advantage of his common sense?

  Moreover, Copernicus states in great detail the grounds and reasons why the ancients believed the earth to be motionless, and then, examining the value of each in turn, he shows them to be ineffective. Now, who ever saw a sensible author engaged in confuting the demonstrations that confirm a proposition he considers true and real? And what kind of judgment would it be to criticize and to condemn a conclusion while in reality he wanted the reader to believe that he accepted it? This sort of incoherence cannot be attributed to such a man.

  Furthermore, note carefully that, since we are dealing with the motion or stability of the earth or of the sun, we are in a dilemma of contradictory propositions (one of which has to be true), and we cannot in any way resort to saying that perhaps it is neither this way nor that way. Now, if the earth’s stability and sun’s motion are de facto physically true and the contrary position is absurd, how can one reasonably say that the false view agrees better than the true one with the phenomena clearly visible and sensed in the movements and arrangement of the stars? Who does not know that there is a most agreeable harmony among all truths of nature, and a most sharp dissonance between false positions and true effects? Will it happen, then, that the earth’s motion and sun’s stability agree in every way with the arrangement of all other bodies in the universe and with all the phenomena, a thousand of them, which we and our predecessors have observed in great detail, and that this position is false? And can the earth’s stability and sun’s motion be considered true and not agree in any way with the other truths? If one could say that neither this nor that position is true, it might happen that one would be more convenient than the other in accounting for the appearances. But, given two [357] positions, one of which must be true and the other false, to say that the false one agrees better with the effects of nature is really something that surpasses my imagination. I add: if Copernicus confesses to having fully satisfied astronomers by means of the hypothesis commonly accepted as true, how can one say that by means of the false and foolish one he could or would want to satisfy again the same astronomers?

  However, I now go on to consider the nature of the business from an internal viewpoint, and to show with how much care one must discuss it.

  Astronomers have so far made two sorts of suppositions: some are primary and pertain to the absolute truth of nature; others are secondary and are imagined in order to account for the appearances of stellar motions, which appearances seem not to agree with the primary and true assumptions. For example, before trying to account for the appearances, acting not as a pure astronomer but as a pure philosopher, Ptolemy supposes—indeed he takes from philosophers— that celestial movements are all circular and regular, namely, uniform; that heaven has a spherical shape; that the earth is at the center of the celestial sphere, is spherical, motionless, etc. Turning then to the inequalities we see in planetary movements and distances, which seem to clash with the primary physical suppositions already established, he goes on to another sort of supposition; these aim to identify the reasons why, without changing the primary ones, there is such a clear and sensible inequality in the movements of planets and in their approaching and their moving away from the earth. To do this he introduces some motions that are still circular, but around centers other than the earth’s,
tracing eccentric and epicyclic circles. This secondary supposition is the one of which it could be said that the astronomer supposes it to facilitate his computations, without committing himself to maintaining that it is true in reality and in nature.

  Let us now see in what kind of hypothesis Copernicus places the earth’s motion and sun’s stability. There is no doubt whatever, if we reflect carefully, that he places it among the primary and necessary suppositions about nature. For, as I have already stated, it seems that he had already given satisfaction to astronomers by the other road, and that he takes this one only to try to solve the greatest problem [358] of nature. In fact, to say that he makes this supposition to facilitate astronomical calculations is so false that instead we can see him, when he comes to these calculations, leaving this supposition and returning to the old one, the latter being more readily and easily understood and still very quick even in computations. This may be seen as follows. Intrinsically, particular calculations can be made by taking one position as well as the other, that is, by making the earth or the heavens rotate; nevertheless, many geometers and astronomers in many books have already demonstrated the properties of orthogonal and oblique displacements of parts of the zodiac in relation to the equator, the declinations of the parts of the ecliptic, the variety of angles between it and both meridians and oblique horizons, and a thousand other specific details necessary to complete astronomical science. This ensures that, when he comes to examining these details of the primary motions, Copernicus himself examines them in the old manner, namely, as occurring along circles traced in the heavens and around the motionless earth, even though stillness and stability should belong to the highest heaven, called the Prime Mobile, and motion to the earth. Thus in the introduction to Book 2 he concludes: “People should not be surprised if we still use the ordinary terms for the rising and setting of the Sun and stars and similar occurrences, but should recognize that we are speaking in customary language, which is acceptable to everyone, yet always bearing in mind that ‘For us who ride the Earth, the Sun and Moon are passing; patterns of stars return, and then again recede.’”16

  We should therefore understand clearly that Copernicus takes the earth’s motion and sun’s stability for no other reason and in no other way than to establish it, in the manner of the natural philosopher, as a hypothesis of the primary sort; on the contrary, when he comes to astronomical computations, he goes back to the old hypothesis, which takes the circles of the basic motions with their details to be located in the highest heaven around the motionless earth, being easier for everyone to understand on account of ingrained habit. But what am I saying? Such is the strength of truth and the weakness of falsehood, that those who speak this way reveal themselves not completely capable of understanding these subjects and not well versed in them; this happens when they let themselves be persuaded that the secondary kind of hypothesis is considered chimerical and fictional by Ptolemy and by other serious astronomers, [359] and that they really regard them as physically false and introduced only for the sake of astronomical computations. The only support they give for this very fanciful opinion is a passage in Ptolemy where, unable to observe more than one simple anomaly in the sun, he wrote that to account for it one could take the hypothesis of a simple eccentric as well as that of an epicycle on a concentric, and he added he preferred the first for being simpler than the second; from these words some very superficially argue that Ptolemy did not consider necessary, but rather wholly fictional, both this and that supposition, since he said they are both equally convenient, while one and only one can be attributed to the sun’s behavior. But what kind of superficiality is this? Who can do both of the following? First, to suppose as true the primary suppositions that planetary motions are circular and regular, and to admit (as the senses themselves necessarily force us) that in running through the zodiac all planets are now slow and now fast, indeed that most of them can be not only slow but also stationary and retrograde, and that we see them now very large and very near the earth and now very small and very far; and then, having understood these former points, to deny that eccentrics and epicycles can really exist in nature? This is wholly excusable for men who are not specialists in these sciences, but for others who would claim to be experts in them it would be an indication that they do not even understand the meaning of the terms eccentric and epicycle. One might just as well first admit that there are three letters, the first of which is G, the second O, and the third D, and then at the end deny that their combination yields GOD and claim that the result is SHADOW. But if rational arguments were not sufficient to make one understand the necessity of having to place eccentrics and epicycles really in nature, at least the senses themselves would have to persuade him: for we see the four Medicean Planets trace four small circles around Jupiter which are very far from enclosing the earth, in short, four epicycles; Venus, which is seen now full of light and now very thinly crescent, provides conclusive evidence that its revolution is around the sun and not around the earth, and consequently that its orbit is an epicycle; and the same may be argued for the case of Mercury. Moreover, the three outer planets are [360] very near the earth when they are in opposition to the sun, and very far when in conjunction; for example, Mars at its closest appears to the senses more than fifty times larger than at its farthest, so that some have occasionally feared that it had gotten lost or had vanished, being really invisible because of its great distance; now, what else can one conclude but that their revolution is made in eccentric circles, or in epicycles, or in a combination of the two, if we take the second anomaly into consideration? So, to deny eccentrics and epicycles in the motions of planets is like denying the light of the sun, or else it is to contradict oneself. Let us apply what I am saying more directly to our purpose: some say that modern astronomers introduce the earth’s motion and sun’s stability suppositionally in order to save the appearances17 and to facilitate calculations, just as epicycles and eccentrics are assumed in the same manner, though the same astronomers consider them physically chimerical and repugnant; I answer that I shall gladly agree with all this talk, as long as they limit themselves to staying within their own conceptions, namely, that the earth’s motion and sun’s stability is as false or true in nature as epicycles and eccentrics. Let them, then, make every effort to do away with the true and real existence of these circles, for if they succeed in demonstrating their nonexistence in nature, I shall immediately surrender and admit the earth’s motion to be a great absurdity. But if, on the contrary, they are forced to accept them, let them also accept the earth’s motion, and let them admit to have been convinced by their own contradictions.

  I could present many other things for this same purpose. However, since I think that whoever is not persuaded by what I have said would not be persuaded by many more reasons either, I want these to suffice. I shall only add something about what could have been the motive why some have concluded with any plausibility that Copernicus himself did not really believe his own hypothesis.

  There is on the reverse side of the title page of Copernicus’ book a certain preface to the reader, which is not by the author since it mentions him in the third person and is without signature.18 It clearly states that no one should believe in the least that Copernicus regarded his position as true, but only that he feigned [361] and introduced it for the calculation of celestial motions; it ends its discussion by concluding that to hold it as true and real would be foolish. This conclusion is so explicit that whoever reads no further, and believes it to have been placed at least with the author’s consent, deserves to be somewhat excused for his error. But what weight to give to the opinion of those who would judge a book without reading anything but a brief preface by the printer or publisher, I let each one decide for himself. I say that this preface can only have originated from the publisher to facilitate the sale of a book which common people would have regarded as a fanciful chimera if a similar preface had not been added; for most of the time buyers are in the habit of reading s
uch prefaces before buying the work. Not only was this preface not written by the author, but it was included without his consent, and also without his knowledge; this is shown by the errors it contains, which the author would have never committed.

  This preface says no one can consider it verisimilar, unless he is completely ignorant of geometry and optics, that Venus has such a large epicycle enabling it now to precede and now to follow the sun by forty degrees or more; for it would have to happen that when it is highest its diameter should appear only one-fourth of what it appears when it is lowest, and that in the latter location its body should be seen as sixteen times bigger than in the former; but these things, he says, are repugnant to the observations made throughout the centuries. In these assertions we see, first, that the writer does not know that Venus departs on one side and on the other of the sun by about forty-eight degrees, and not forty as he says. Moreover, he asserts that its diameter should appear four times, and its body sixteen times, larger in one position than in the other. Here, first, due to a geometrical oversight he does not understand that when a globe has a diameter four times larger than another, its body is sixty-four times bigger, and not sixteen, as he stated. Hence, if he considered such an epicycle absurd and wanted to declare it to be physically impossible, if he had understood this subject, he could have made the absurdity much greater; for, according to the position he wants to refute (well known to astronomers), Venus digresses from the sun almost forty-eight degrees, and when farthest from the earth its distance [362] must be more than19 six times greater than when closest, and consequently its apparent diameter in the latter position is more than six times larger than in the former (not four times), and its body more than two hundred and sixteen times greater (and not just sixteen). These errors are so gross that it is impossible to believe they were committed by Copernicus, or by anyone else but the most unqualified persons. Moreover, why label such a large epicycle most absurd, so that because of such an absurdity we would conclude that Copernicus did not regard his assumptions as true, and that neither should others so regard them? He should have remembered that in chapter 10 of the first book Copernicus is speaking ad hominem and is attacking other astronomers who allege that it is a great absurdity to give Venus such an epicycle, which is so large as to exceed the whole lunar orbit by more than two hundred times, and which does not contain anything inside; he then removes the absurdity when he shows that inside Venus’ orbit is contained the orbit of Mercury and, placed at the center, the body of the sun itself. What frivolity is this, then, to want to show a position mistaken and false on account of a difficulty which that position not only does not introduce in nature but completely removes? Similarly it removes the immense epicycles which out of necessity other astronomers assumed in the other system. This only touches the writer of Copernicus’ preface; so we may argue that if he had included something else professionally relevant, he would have committed other errors.

 

‹ Prev