Book Read Free

The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos

Page 22

by Brian Greene


  Quantum mechanics takes such inaccessibility still further. The central ingredient of quantum mechanics is the probability wave, governed by an equation discovered in the mid-1920s by Erwin Schrödinger. Even though such waves are its hallmark feature, we will see in Chapter 8 that the architecture of quantum physics ensures that they’re permanently and completely unobservable. Probability waves give rise to predictions for where this or that particle is likely to be found, but the waves themselves slither outside the arena of everyday reality.2 Nevertheless, because the predictions succeed so well, generations of scientists have accepted such an odd situation: a theory introduces a radically new and vital construct that, according to the theory itself, is unobservable.

  The common theme running through these examples is that a theory’s success can be used as an after-the-fact justification for its basic architecture, even when that architecture remains beyond our ability to access directly. This is so thoroughly part of the daily experience of theoretical physicists that the language used and the questions formulated regularly refer, without the slightest hesitation, to things that are at the very least far less accessible than tables and chairs and some of which lie permanently outside the bounds of direct experience.*

  When we go further and use a theory’s architecture to learn about the phenomena it entails, yet other kinds of inaccessibility present themselves. Black holes emerge from the mathematics of general relativity, and astronomical observations have provided substantial evidence that they’re not only real but commonplace. Even so, the interior of a black hole is an exotic environment. According to Einstein’s equations, the black hole’s edge, its event horizon, is a surface of no return. You can cross in, but you can’t cross out. We committed exterior dwellers will never observe a black hole’s interior, not just because of practical considerations but as a consequence of the very laws of general relativity. Yet, there’s full consensus that the region on the other side of a black hole’s event horizon is real.

  The application of general relativity to cosmology provides even more extreme instances of inaccessibility. If you don’t mind a one-way journey, the interior of a black hole is at least a possible destination. But realms lying beyond our cosmic horizon are unreachable, even if we were able to travel at nearly light speed. In an accelerating universe such as ours, this point becomes forcefully evident. Given the measured value of the cosmological speedup (and assuming it will never change), any object more distant from us than about 20 billion light-years lies permanently outside what we can see, visit, measure, or influence. Farther than that distance, space will always be receding from us so quickly that any attempt to breach the separation would be as fruitless as a kayaker navigating against a current flowing faster than she can paddle.

  Objects that have always been beyond our cosmic horizon are objects that we have never observed and never will observe; conversely, they have never observed us, and never will. Objects that at some time in the past were within our cosmic horizon but have been dragged beyond it by spatial expansion are objects that we once could see but never will again. Yet I think we can agree that such objects are as real as anything tangible, and so are the realms they inhabit. It would surely be peculiar to argue that a galaxy that we could once see but that has since slipped over our cosmic horizon has entered a realm that’s nonexistent, a realm that because of its permanent inaccessibility needs to be wiped off reality’s map. Even though we can’t observe or influence such realms, nor they us, they are properly included in our picture of what exists.3

  These examples make clear that science is no stranger to theories that include elements, from basic ingredients to derived consequences, that are inaccessible. Our confidence in such intangibles relies on our confidence in the theory. When quantum mechanics invokes probability waves, its impressive ability to describe things we can measure, such as the behavior of atoms and subatomic particles, compels us to embrace the ethereal reality it posits. When general relativity predicts the existence of places we can’t observe, its phenomenal successes in describing those things we can observe, such as the motion of planets and the trajectory of light, compels us to take the predictions seriously.

  So for confidence in a theory to grow we don’t require that all of its features be verifiable; a robust and varied assortment of confirmed predictions is enough. Scientific work going back well over a century has accepted that a theory may invoke hidden, inaccessible elements—provided it also makes interesting, novel, and testable predictions about an abundance of observable phenomena.

  This suggests that it’s possible to mount a convincing argument for a theory involving a multiverse even if we can’t obtain any direct evidence for universes beyond our own. If the experimental and observational evidence supporting a theory compels you to embrace it, and if the theory is founded on such a tight mathematical structure that there’s no room for cherry-picking among its features, then you have to embrace all of it. And if the theory implies the existence of other universes, then that’s the reality the theory requires you to take on board.

  In principle, then—and make no mistake, my point here is one of principle—the mere invocation of inaccessible universes does not consign a proposal to stand outside science. To amplify this, imagine that one day we assemble a convincing experimental and observational case for string theory. Perhaps a future accelerator is able to detect sequences of string vibrational patterns and evidence for extra dimensions, while astronomical observations detect stringy features in the microwave background radiation, as well as the signatures of long stretched strings undulating through space. Suppose further that our understanding of string theory has progressed substantially, and we’ve learned that the theory absolutely, positively, incontrovertibly generates the Landscape Multiverse. Notwithstanding calls to the contrary, a theory with strong experimental and observational support, whose internal structure requires a multiverse, would lead us to conclude inexorably that the time for “giving in” had arrived.*

  So to address the question heading this section, in the right scientific context it would not merely be respectable to invoke a multiverse; failing to do so would evidence nonscientific prejudice.

  Science and the Inaccessible II:

  So much for principle; where do we stand in practice?

  The skeptic will rightly respond that it’s one thing to make a point of principle about how the case for a given multiverse theory might be fashioned. It’s another to assess whether any of the multiverse proposals we’ve described qualify as experimentally confirmed theories that come equipped with an absolute prediction of other universes. Do they?

  The Quilted Multiverse arises from an infinite spatial expanse, a possibility that fits squarely within general relativity. The snag is that general relativity allows for an infinite spatial expanse but doesn’t require it, which in turn explains why, even though general relativity is an accepted framework, the Quilted Multiverse remains tentative. An infinite spatial expanse does emerge directly from eternal inflation—recall that each bubble universe when viewed from the inside appears infinitely large—but in this setting the Quilted Multiverse is rendered uncertain because the underlying proposal, eternal inflation, remains hypothetical.

  The same consideration affects the Inflationary Multiverse, which also emerges from eternal inflation. Astronomical observations over the past decade have bolstered the physics community’s confidence in inflationary cosmology but have nothing to say about whether the inflationary expansion is eternal. Theoretical studies show that although many versions are eternal, yielding bubble universe upon bubble universe, some entail but a single ballooning spatial expanse.

  The Brane, Cyclic, and Landscape Multiverses are based on string theory, so they suffer multiple uncertainties. Remarkable as string theory may be, rich as its mathematical structure may have become, the dearth of testable predictions, and the concomitant absence of contact with observations or experiments, relegates it to the realm of scientific speculat
ion. Moreover, with the theory still very much a work in progress, it’s unclear which features will continue to play a primary role in future refinements. Will branes, the basis of the Brane and Cyclic Multiverses, remain central? Will the copious choices for the extra dimensions, the basis for the Landscape Multiverse, persist, or will we eventually find a mathematical principle that picks out one particular shape? We just don’t know.

  So, although it’s conceivable that we could fashion a convincing argument for a multiverse theory that made little or no reference to its prediction of other universes, for the multiverse scenarios we’ve encountered that approach won’t fly. At least not yet. To assess any of them, we will need to tackle their prediction of a multiverse head-on.

  Can we? Can a theory’s invocation of other universes yield testable predictions even if those universes lie beyond the reach of experiments and observations? Let’s address this key question through a number of steps. We’ll follow the pattern above, progressing from an “in principle” to an “in practice” perspective.

  Predictions in a Multiverse I:

  If the universes constituting a multiverse are inaccessible, can they nevertheless meaningfully contribute to making predictions?

  Some scientists who resist multiverse theories see the enterprise as an admission of failure, a full-fledged retreat from the long-sought goal of understanding why the universe we see has the properties it does. I empathize, being one of many who have worked for decades to realize string theory’s tantalizing promise of calculating every fundamental observable feature of the universe, including the values of nature’s constants. If we accept that we’re part of a multiverse in which some or perhaps even all of the constants vary from one universe to another, then we accept that this goal is misguided. If the fundamental laws allow, say, the strength of the electromagnetic force to have many different values across the multiverse, then the very notion of calculating the strength is meaningless, like asking a pianist to pick out the note.

  But here’s the question: Does variation in features mean that we lose all power to predict (or postdict) those intrinsic to our own universe? Not necessarily. Even though a multiverse precludes uniqueness, it’s possible that a degree of predictive capability can be retained. It comes down to statistics.

  Consider dogs. They don’t have a unique weight. There are very light dogs, such as Chihuahuas, that can weigh under two pounds; there are very heavy dogs, such as Old English mastiffs, that can tip the scales at over two hundred pounds. Were I to challenge you to predict the weight of the next dog you pass in the street, it might seem that the best you could do would be to pick a random number within the range I’ve given. Yet, with a little information, you can make a more refined guess. If you get ahold of the dog population data in your neighborhood, such as the number of people who have this or that breed, the distribution of weights within each breed, and perhaps even information on the number of times per day different breeds typically need to be taken for a walk, you can figure out the weight of the dog you are most likely to encounter.

  This wouldn’t be a sharp prediction; statistical insights often aren’t. But depending on the distribution of dogs, you may be able to do much better than just pulling a number out of a hat. If your neighborhood has a highly skewed distribution, with 80 percent of the dogs being Labrador retrievers whose average weight is sixty pounds, and the other 20 percent composed of a range of breeds from Scottish terriers to poodles whose average weight is thirty pounds, then something in the fifty-five- to sixty-five-pound range would be a good bet. The dog you next encounter may be a fluffy shih tzu, but odds are it won’t be. For distributions that are even more skewed, your predictions can be more precise. If 95 percent of the dogs in your area were sixty-two-pound Labrador retrievers, then you’d be on firmer ground in predicting that the next dog you pass will be one of these.

  A similar statistical approach can be applied to a multiverse. Imagine we are investigating a multiverse theory that allows for a wide range of different universes—different values of force strengths, particle properties, cosmological constant values, and so on. Imagine further that the cosmological process by which these universes form (such as the creation of bubble universes in the Landscape Multiverse) is sufficiently well understood that we can determine the distribution of universes, with various properties, across the multiverse. This information has the capacity to yield significant insights.

  To illustrate the possibilities, suppose our calculations yield a particularly simple distribution: some physical features vary widely from universe to universe, but others are unchanging. For example, imagine the math reveals that there’s a collection of particles, common to all the universes in the multiverse, whose masses and charges have the same values in each universe. A distribution like this generates absolutely firm predictions. If experiments undertaken in our single lone universe don’t find the predicted collection of particles, we’d rule out the theory, multiverse and all. Knowledge of the distribution thus makes this multiverse proposal falsifiable. Conversely, if our experiments were to find the predicted particles, that would increase our confidence that the theory is right.4

  For another example, imagine a multiverse in which the cosmological constant varies across a huge range of values, but it does so in a highly nonuniform manner, as illustrated schematically in Figure 7.1. The graph denotes the fraction of universes within the multiverse (vertical axis) that have a given value of the cosmological constant (horizontal axis). If we were part of such a multiverse, the mystery of the cosmological constant would take on a decidedly different character. Most universes in this scenario have a cosmological constant close to what we’ve measured in our universe, so while the range of possible values would be huge, the skewed distribution implies that the value we’ve observed is nothing special. For such a multiverse, you should be no more mystified by our universe’s having a cosmological constant value 10–123 than you should be surprised by encountering a sixty-two-pound Labrador retriever during your next stroll around the neighborhood. Given the relevant distributions, each is the most likely thing that could happen.

  Figure 7.1 A possible distribution of cosmological constant values across a hypothetical multiverse, illustrating that highly skewed distributions can make otherwise puzzling observations understandable.

  Here’s a variation on the theme. Imagine that, in a given multiverse proposal, the cosmological constant’s value varies widely, but unlike in the previous example, it varies uniformly; the number of universes that have a given value of the cosmological constant is on a par with the number of universes that have any other value of the cosmological constant. But imagine further that a close mathematical study of the proposed multiverse theory reveals an unexpected feature in the distribution. For those universes in which the cosmological constant is in the range we’ve observed, the math shows there’s always a species of particle whose mass is, say, five thousand times that of the proton—too heavy to have been observed in accelerators built in the twentieth century, but right within the range of those built in the twenty-first. Because of the tight correlation between these two physical features, this multiverse theory is also falsifiable. If we fail to find the predicted heavy species of particle we would disprove this proposed multiverse; discovery of the particle would strengthen our confidence that the proposal is correct.

  Let me underscore that these scenarios are hypothetical. I invoke them because they illuminate a possible profile for scientific insight and verification in the context of a multiverse. I suggested earlier that if a multiverse theory gives rise to testable features beyond the prediction of other universes, it’s possible—in principle—to assemble a supporting case even if the other universes are inaccessible. The examples just given make this suggestion explicit. For these kinds of multiverse proposals, the answer to the question heading this section would unequivocally be yes.

  The essential feature of such “predictive multiverses” is that they’re not compo
sed from a grab-bag of constituent universes. Instead, the capacity to make predictions emerges from the multiverse evincing an underlying mathematical pattern: physical properties are distributed across the constituent universes in a sharply skewed or highly correlated manner.

  How might this happen? And, leaving the realm of “in principle,” does it happen in the multiverse theories we’ve encountered?

  Predictions in a Multiverse II:

  So much for principle; where do we stand in practice?

  The distribution of dogs in a given area depends on a range of influences, among them cultural and financial factors and plain old happenstance. Because of this complexity, if you were intent on making statistical predictions your best bet would be to bypass considerations of how a given dog distribution came to be and simply use the relevant data from the local dog licensing authority. Unfortunately, multiverse scenarios don’t have comparable census bureaus, so the analogous option isn’t available. We’re forced to rely on our theoretical understanding of how a given multiverse might arise to determine the distribution of the universes it would contain.

  The Landscape Multiverse, relying on eternal inflation and string theory, provides a good case study. In this scenario, the twin engines driving the production of new universes are inflationary expansion and quantum tunneling. Remember how this goes: An inflating universe, corresponding to one or another valley in the string landscape, quantum-tunnels through one of the surrounding mountains and settles down in another valley. The first universe—with definite features such as force strengths, particle properties, value of the cosmological constant, and so forth—acquires an expanding bubble of the new universe (see Figure 6.7), with a new set of physical features, and the process continues.

 

‹ Prev