Book Read Free

The Lady and Her Monsters

Page 1

by Roseanne Montillo




  The Lady and Her Monsters

  A Tale of Dissections, Real-Life Dr. Frankensteins, and the Creation of Mary Shelley’s Masterpiece

  roseanne montillo

  Dedication

  For my mother, Celeste Montillo; my late father, Giovanni Montillo; and my sister, Francesca Montillo

  Contents

  Dedication

  Prologue

  Chapter 1

  The Spark of Life

  Chapter 2

  Waking the Dead

  Chapter 3

  Making Monsters

  Chapter 4

  A Meeting of Two Minds

  Chapter 5

  Eloping to the Mainland

  Chapter 6

  My Hideous Progeny

  Chapter 7

  Frankenstein; or, The Modern Prometheus

  Chapter 8

  The Anatomy Act

  Chapter 9

  A Sea Change

  Epilogue

  Acknowledgments

  Notes

  Bibliography

  Index

  About the Author

  Credits

  Copyright

  About the Publisher

  PROLOGUE

  For I am building in the human understanding a true model of the world, such as it is in fact, not such as a man’s own reason would have it to be; a thing which cannot be done without a very diligent dissection and anatomy of the world.

  FRANCIS BACON,

  THE WORKS OF SIR FRANCIS BACON

  Camillo’s footsteps echoed loudly as he crossed the empty cobblestone streets of Bologna toward his uncle’s house. The afternoon was hot, and the scorching heat, coupled with that lazy midafternoon spell between noon and evening, allowed him to go by virtually unnoticed.

  Summer in the city often proved vicious, and Bologna, the capital city of the northern Italian region of Emilia-Romagna, was suffering beneath the punishing sun. Harsh sunlight fell onto the red rooftops, distressing those inhabitants who had sought relief beneath one of the city’s many porticoes. The city had been built on the edge of Via Emilia, a military road constructed by the Romans in 187 B.C. This extended from Piacenza, at the northernmost end, all the way to the Adriatic Sea. To the south, the city was bracketed by the Apennines, mountains that were as capricious as they were majestic, and to the north by the fertile lands and deep planes of the Po Valley, used for agriculture, farming, and raising livestock, particularly pigs. This had allowed Bologna to garner one of its many nicknames: “Bologna, la Grassa,” “Bologna the Fat.”

  But as Camillo made his way across Piazza Maggiore, his mind was not on pigs; rather, it was on frogs.

  He had been eagerly waiting for this day, but this infernal heat had been going on for weeks. Earlier, when he poked his head out of a window, something unusual had occurred: he heard the boom of thunder as it broke somewhere in the lowlands, and recognized the rumbles as they slowly made their way toward the city. Looking upward, he had noticed that thick dark clouds were slowly covering the sky. He then left his house and headed for the home of his uncle, the famed Luigi Galvani, one of the most renowned physiologists and obstetricians in Bologna.

  Galvani had also been waiting for storms. As of late, he had been delving into experiments that complemented the medical and surgical skills he practiced in the city’s many hospitals. But for almost a decade now, he had also been studying the field of elettricità animale, animal electricity. As a doctor, the field of electricity in general interested him deeply, particularly as it related to the cure of paralysis.

  This so-called cure had been shown to work before. The Bolognese physiologist Giuseppe Veratti had applied electricity to various diseases, including paralysis and arthritis. The positive results were then set down in a book published in 1748 that Galvani had most certainly read.

  Late in the 1760s, Veratti’s experiments had also included the use of frogs and other small animals. Although those particular findings were never published, he gave demonstrations at the famed Academy of Sciences in Bologna in the years 1769 and 1770, where, at the time, Galvani was a member of and professor at the Institute of Sciences.

  Galvani’s choice of experimental animals also included frogs, what Hermann Helmholtz in 1845 called “the martyrs of science.” Thousands of these amphibians had been slaughtered in the company of Galvani’s nephews, assistants, and wife, and eventually he arrived at one conclusion: there was a fluid inherent to all living creatures that ran from head to toe, and this could be manipulated with an outside apparatus, such as a metallic arc or a rod. This manipulation allowed the body to restore its inner activity, which in turn aided in the cure of paralysis and other diseases, restoring vitality.

  Lithograph from De virubus electricitatis in motu musculari commentarius, displaying the dissected frogs Luigi Galvani used in his experiments as well as the metallic arcs.

  In time Galvani found that pharmacology also influenced the results. In a lecture he delivered at the Academy of Sciences, he spoke of the effects opiates had on animal electricity. According to his notes, he injected opium into the frogs’ abdominal cavities, stomachs, or cerebrums. While at first the frogs remained splayed and flaccid, they eventually revived and demonstrated a “violent convulsion, either from a slight tremor of the surface upon which they were resting or from contact with some body.” If he hacked off the frogs’ heads and pumped their bodies with opium, he got the same results.

  Apparatus formerly used by Luigi Galvani. Brass discharging arcs used to connect muscle and nerves.

  But on that hot day, August 17, 1786, he wanted to prove a different theory, using a method that in part resembled Benjamin Franklin’s famous kite experiment: he wanted to see if he could elicit movements in the frogs’ legs by employing atmospheric phenomena.

  Galvani, his wife, Lucia, and his two nephews, who also served as assistants, gathered atop the balcony, the highest point in his house. Galvani had ordered metal hooks hung on the iron railings, and now a “prepared frog” dangled from each. The prepared frogs, he said, “should be cut transversally below their upper limbs, skinned and disemboweled . . . only their lower limbs are left joined together, containing just their long crural nerves. These are either left loose or free, or attached to the spinal cord, which is either left intact in its vertebral canal or carefully extracted from it and partly or wholly separated.”

  He gave the frogs the same close attention he gave all of his patients, employing the same expert surgical skills he had obtained at the hospital of Santa Maria Della Morte, “Saint Mary of Death,” and Sant’Orsola. The movements of his hands were fluid, sinuous, and virtually flawless.

  Notebook in hand, Galvani took copious notes. Those who knew him were aware that he brought an almost religious fervor to his work. Of course, that was not a coincidence. In his childhood, he had wanted to devote his life to God, a life of obedience and order, going so far as to join the Oratorio dei Padri Filippini, a religious order. But, as the firstborn in the family, his father, Domenico Galvani, and his mother, Barbara, who followed protocol and sent him to university, had chosen his path. It was at the University of Bologna, in the Faculty of Arts, that he came to realize the possibility of finding spiritual solace in scientific work. The university had been founded around the end of the eleventh century and eventually became known all over the world as “Alma Mater Studiorum” for being the oldest university in the western world. It boasted scholars and researchers in many fields, from law to philosophy, but the study of medicine, particularly anatomy, eventually made it notorious.

  Lucia was the daughter of one of the most famous anatomists in the city, Domenico Gusmano Galeazzi. Unlike most children, Lucia had grown up privy
to her father’s experiments, which often involved mangled corpses being anatomized in a laboratory close to the family kitchen. During her youth, city officials had not precisely condoned anatomizations in private homes, though they had not discouraged them either.

  They had pretended not to notice when the weather warmed that the rotten stench of decaying bodies trickled out, the sickening odor of putrid flesh mingling with the cooking smells of the city. Even then, officials assumed that anatomists were learning information that would be useful not only for their students, but for people at large. They were correct. Through one of those experiments, Galeazzi first detected the presence of iron in the blood and made even more discoveries regarding the body’s gastrointestinal system.

  As the boom of thunder neared, Galvani and his crew noticed the amphibians’ legs twitching, and as he later reported in his Commentaries, “Just as the splendor and flash of the lightning are wont, so the muscular motions and contractions of those animals preceded the thunders, and, as it were, warned of them.”

  The frogs behaved as expected, and “in correspondence of four thunders, contractions not small occurred in all muscles of the limbs, and, as a consequence, not small hops and movements of the limbs. These occurred just at the moment of the lightning.”

  Although the frogs were dead, skinned, and nearly eviscerated, when zapped by an electrical arc or when they came in contact with a distant flash of thunder, their legs twitched in a way that made them seem as if they were ready to hop off the balcony and into the streets below. While this was happening, Galvani’s tempestuous nephew Giovanni Aldini looked on. Standing on that balcony, feeling the hot August wind, watching black clouds roll above his head, and hearing for the first time in days the slight pinging of rain on Bologna’s rooftops, he must have realized that these experiments were more than just his uncle’s folly: they were the very essence of life.

  In those moments, the theories that would direct the rest of his life began to form: Could those frogs truly return to life? And if that happened, what were the implications? Could his uncle’s ideas later be used on lambs, oxen, sheep, and cows? And even further, could men benefit from such a thing? Not only the living, but also the dead? Could the process of reanimation be proven possible?

  In the years that followed, Giovanni Aldini further tested those theories. The climax of his experiments occurred on January 17, 1803, at the Royal College of Surgeons in London, where he performed a never-before-tried experiment on the body of a convicted felon. By then, many of his earlier experiments performed on animals and humans—some dead and some living—had convinced him that galvanism (the new science named after his uncle) presented an opportunity for restarting one of the body’s main vital organs: the heart. If that were to happen, the dead could reawaken.

  By then, Aldini’s experiments, and the topic of reanimation in general, had become fashionable in all of European society, from the natural philosophers, who began to delve deeper into the powers and possibilities of a vital force existing in humans and nature, to the more amateurish individuals, whose dubious endeavors merely allowed for a massive slaughter of frogs, pigs, and dogs, all in the name of science. It also became a go-to subject not only in the scientific community, but also among artists and writers and at crowd-pleasing soirées and salons all over England, France, and Germany.

  In the early 1800s, the distinction between a scientist, an artist, a political reformer, and a man of letters was not as clear cut as it later became. The disciplines intertwined, the interests overlapped. As such, scientists like Humphry Davy and Erasmus Darwin not only studied the topics of electricity and vitalism, but also wrote poems and essays on the subjects, which were published and well received by the public at large. Poets such as Percy Shelley experimented with galvanic electricity, poisons, and gases, later jotting down long poems and odes that mused on the sublime mysteries of the natural world and the awesome powers of lightning and thunder.

  But one particular author, Mary Godwin Shelley, truly combined the urgency of scientific endeavors in the late eighteenth and early nineteenth centuries, the lure of forbidden knowledge, and the power of literary interpretation in her masterpiece, Frankenstein; or, The Modern Prometheus. That it was published in 1818 and written barely a year and a half earlier was not a coincidence. She was well aware of the scientific procedures occurring around her. She had heard of Giovanni Aldini’s experiments (first from her father’s friend the medic Anthony Carlisle, who took great interest in such events and is believed to have attended Aldini’s experiments, and later from her lover, Percy Shelley) and of his uncle Luigi Galvani’s theories on animal electricity.

  She knew of Humphry Davy and was aware of his lectures and writings, even using them, and him, for inspiration in her work. She had also read Erasmus Darwin’s early theories of evolution. More important, her lover, who later became her husband, Percy Shelley, a poet, science aficionado, and fan of the macabre, was the one who introduced her to many of the scientific properties and theories exploding around her. He even went so far as to demonstrate certain experiments to her. Along with all of that, the literary publications of the time provided her with a good foundation.

  Thus, it is no surprise, given all Mary Shelley had at her disposal, that she was able to create the archetype of the famed, mad, brilliant scientist of the nineteenth century: Victor Frankenstein.

  Chapter 1

  THE SPARK OF LIFE

  Her lips were red, her looks were free,

  Her locks were yellow as gold;

  Her skin was as white as leprosy,

  The Night-mare Life-in-Death was she,

  Who thicks man’s blood with cold.

  SAMUEL TAYLOR COLERIDGE,

  THE RIME OF THE ANCIENT MARINER

  On Sunday, August 24, 1806, Mary Godwin and her younger stepsister, Jane Clairmont (later Claire Clairmont), hid quietly beneath the couches in the parlor. Their home, a five-story brownstone located on Skinner Street, had quickly become a stimulating hub for intellectual discourse, with Mary’s father, William Godwin, the celebrated writer and reformer, as its master of ceremonies. The girls had not been invited to join the festivities, and no one knew they were even present in the parlor as a great bustle took place about them. Having snuck in there when no one was looking, they worked hard not to be discovered.

  Jane Clairmont—Jane’s mother and Mary’s new stepmother—had forbidden them from attending these gatherings. Jane believed the conversations that took place among the crowd, on religion, the existence of God, politics, and the so-called principle of life, were inappropriate for young ears. Given her propensity for arguments, the girls often did as told, though sometimes Mary disregarded her stepmother and listened to her father’s discussions from atop the staircase.

  But on that Sunday, the poet Samuel Taylor Coleridge had arrived on Skinner Street, and Mary knew he would be reciting verses from his famous poem The Rime of the Ancient Mariner, published some years earlier in 1798. She had heard her father speak of it and now wanted to hear it for herself. Learning of her plan, her stepsister naturally followed suit.

  Coleridge had met William Godwin in 1794, but like many who crossed paths with the reformer then, he had not been impressed. “He appears to me to possess neither the strength of intellect that discovers truth, or the power of imagination that decorate falsehood,” Coleridge had said. “He talked futile sophism.” But after meeting Godwin again following the death of Godwin’s first wife, Mary Wollstonecraft, Coleridge had changed his mind. Apparently, her death had mollified Godwin’s character, softening his dark edges and making him more tolerable.

  As the two girls eavesdropped, Godwin and the rest of the gentlemen gathered in. The wood-paneled room had been filled with a great deal of brilliance before: Humphry Davy, William Wordsworth, Charles Lamb, and many others. Now Coleridge took his turn. The poem was a mixture of poetical and popular language that some critics argued had come about as a direct response to the German gothic horror
tales that were now so popular in England. Rime had appeared some years after the publication of Gottfried Bürger’s Lenore, which had awakened popular fascination with the macabre. Writing some years later, a reviewer in the Monthly Review tied the publication of the Rime to “a time when . . . ‘Hell Made Holiday’ and ‘Row heads and bloody bones’ were the only fashionable entertainment for men and women.”

  Others speculated that the poem had been inspired by the explorations of James Cook, particularly his second voyage into the South Seas. This notion was further bolstered because William Wales, the astronomer on Cook’s ship, was also Coleridge’s tutor. Perhaps Wales had told Coleridge about those experiences. But others argued that Coleridge, who was often plunged into the depths of great depressions and anxious fits, had found his muse in the massive amounts of opium he had used to relieve these symptoms and that might have worked as a kind of hallucinogenic.

  The girls huddled closer together as Coleridge began his story of an old ancient mariner who at first had been eager to leave his home in search of new continents. Upon his return from those explorations, he became adamant about telling his tale. While out walking one day, he stopped a man on his way to a wedding and recounted his travails. The man was indulgent for a time and found himself avidly listening and experiencing all the emotions a person went through in a lifetime: he was at times exhilarated, envious, and fascinated, and at others he felt sadness, sorrow, and even anger. And it is possible Mary and Jane, beneath the sofa, also suffered the same shifts in emotions as Coleridge’s voice rang out:

  The Wedding-guest sat on a stone:

 

‹ Prev