Works of Johann Wolfgang von Goethe

Home > Fiction > Works of Johann Wolfgang von Goethe > Page 311
Works of Johann Wolfgang von Goethe Page 311

by Johann Wolfgang von Goethe


  Main contents table link

  XXXII. Paroptical Colours.

  389

  The paroptical colours have been hitherto called perioptical, because a peculiar effect of light was supposed to take place as it were round the object, and was ascribed to a certain flexibility of the light to and from the object.

  390

  These colours again may be divided into subjective and objective, because they appear partly without us, as it were, painted on surfaces, and partly within us, immediately on the retina. In this chapter we shall find it more to our purpose to take the objective cases first, since the subjective are so closely connected with other appearances already known to us, that it is hardly possible to separate them,

  391

  The paroptical colours then are so called because the light must pass by an outline or edge to produce them. They do not, however, always appear in this case; to produce the effect very particular conditions are necessary besides.

  392

  It is also to be observed that in this instance again light does not act as an abstract diffusion (361), the sun shines towards an edge. The volume of light poured from the sun-image passes by the edge of a substance, and occasions shadows. Within these shadows we shall presently find colours appear.

  393

  But, above all, we should make the experiments and observations that bear upon our present inquiry in the fullest light. We, therefore, place the observer in the open air before we conduct him to the limits of a dark room.

  394

  A person walking in sun-shine in a garden, or on any level path, may observe that his shadow only appears sharply defined next the foot on which he rests; farther from this point, especially round the head, it melts away into the bright ground. For as the sun-light proceeds not only from the middle of the sun, hut also acts cross-wise from the two extremes of every diameter, an objective parallax takes place which produces a half-shadow on both sides of the object,

  395

  If the person walking raises and spreads his hand, he distinctly sees in the shadow of each finger the diverging separation of the two half-shadows outwards, and the diminution of the principal shadow inwards, both being effects of the cross action of the light.

  396

  This experiment may be repeated and varied before a smooth wall, with rods of different thicknesses, and again with balls; we shall always find that the farther the object is removed from the surface of the wall, the more the weak double shadow spreads, and the more the forcible main shadow diminishes, till at last the main shadow appears quite effaced, and even the double shadows become so faint, that they almost disappear; at a still greater distance they are, in fact, imperceptible.

  397

  That this is caused by the cross-action of the light we may easily convince ourselves; for the shadow of a pointed object plainly exhibits two points. We must thus never lose sight of the fact that in this case the whole sun-image acts, produces shadows, changes them to double shadows, and finally obliterates them.

  398

  Instead of solid bodies let us now take openings cut of various given sizes next each other, and let the sun shine through them on a plane surface at some little distance; we shall find that the bright image produced by the sun on the surface, is larger than the opening; this is because one edge of the sun shines towards the opposite edge of the opening, while the other edge of the disk is excluded on that side. Hence the bright image is more weakly lighted towards the edges.

  399

  If we take square openings of any size we please, we shall find that the bright image on a surface nine feet from the opening, is on every side about an inch larger than the opening; thus nearly corresponding with the angle of the apparent diameter of the sun.

  400

  That the brightness should gradually diminish towards the edges of the image is quite natural, for at last only a minimum of the light can act cross-wise from the sun’s circumference through the edge of the aperture.

  401

  Thus we here again see how much reason we have in actual observation to guard against the assumption of parallel rays, bundles and fasces of rays, and the like hypothetical notions.

  402

  We might rather consider the splendour of the sun, or of any light, as an infinite specular multiplication of the circumscribed luminous image, whence it may be explained that all square openings through which the sun shines, at certain distances, according as the apertures are greater or smaller, must give a round image of light,

  403

  The above experiments may be repeated through openings of various shapes and sizes, and the same effect will always take place at proportionate distances, In all these cases, however, we may still observe that in a full light and while the sun merely shines past an edge, no colour is apparent.

  404

  We therefore proceed to experiments with a subdued light, which is essential to the appearance of colour. Let a small opening be made in the window-shutter of a dark room; let the crossing sun-light which enters, be received on a surface of white paper, and we shall find that the smaller the opening is, the dimmer the light image will be. This is quite obvious, because the paper does not receive light from the whole sun, but partially from single points of its disk.

  405

  If we look attentively at this dim image of the sun, we find it still dimmer towards the outlines where a yellow border is perceptible. The colour is still more apparent if a vapour or a transparent cloud passes before the sun, thus subduing and dimming its brightness. The halo on the wall, the effect of the decreasing brightness of a light placed near it, is here forced on our recollection. (88.)

  406

  If we examine the image more accurately, we perceive that this yellow border is not the only appearance of colour; we can see, besides, a bluish circle, if not even a halo-like repetition of the coloured border. If the room is quite dark, we discern that the sky next the sun also has its effect: we see the blue sky, nay, even the whole landscape, on the paper, and are thus again convinced that as far as regards the sun, we have here only to do with a luminous image.

  407

  If we take a somewhat larger square opening, so large that the image of the sun shining through it does not immediately become round, we may distinctly observe the half-shadows of every edge or side, the junction of these in the corners, and their colours; just as in the above-mentioned appearance with the round opening,

  408

  We have now subdued a parallactic light by causing it to shine through small apertures, but we have not taken from it its parallactic character; so that it can produce double shadows of bodies, although with diminished power. These double shadows which we have hitherto been describing, follow each other in light and dark, coloured and colourless circles, and produce repeated, nay, almost innumerable halos. These effects have been often represented in drawings and engravings. By placing needles, hairs, and other small bodies, in the subdued light, the numerous halo-like double shadows may be increased; thus observed, they have been ascribed to an alternating flexile action of the light, and the same assumption has been employed to explain the obliteration of the central shadow, and the appearance of a light in the place of the dark.

  409

  For ourselves, we maintain that these again are parallactic double shadows, which appear edged with coloured borders and halos.

  410

  After having seen and investigated the foregoing phenomena, we can proceed to the experiments with knife-blades, exhibiting effects which may be referred to the contact and parallactic mutual intersection of the half-shadows and halos already familiar to us.

  411

  Lastly, the observer may follow out the experiments with hairs, needles, and wires, in the half-light produced as before described by the sun, as well as in that derived from the blue sky, and indicated on the white paper. He will thus make himself still better acquainted with the true nature of this phenomenon.

  412


  But since in these experiments everything depends on our being persuaded of the parallactic action of the light, we can make this more evident by means of two sources of light, the two shadows from which intersect each other, and may be altogether separated. By day this may be contrived with two small openings in a window-shutter; by night, with two candles. There are even accidental effects in interiors, on opening and closing shutters, by means of which we can better observe these appearances than with the most careful apparatus. But still, all and each of these may be reduced to experiment by preparing a box which the observer can look into from above, and gradually diminishing the openings after having caused a double light to shine in. In this case, as might be expected, the coloured shadow, considered under the physiological colours, appears very easily.

  413

  It is necessary to remember, generally, what has been before stated with regard to the nature of double shadows, half-lights, and the like. Experiments also should especially be made with different shades of grey placed next each other, where every stripe will appear light by a darker, and dark by a lighter stripe next it. If at night, with three or more lights, we produce shadows which cross each other successively, we can observe this phenomenon very distinctly, and we shall be convinced that the physiological case before more fully treated, here comes into the account (38).

  414

  To what extent the appearances that accompany the paroptical colours, may be derived from the doctrine of subdued lights, from half-shadows, and from the physiological disposition of the retina, or whether we shall be forced to take refuge in certain intrinsic qualities of light, as has hitherto been done, time may teach. Suffice it here to have pointed out the conditions under which the paroptical colours appear, and we may hope that our allusion to their connexion with the facts before adduced by us will not remain unnoticed by the observers of nature.

  415

  The affinity of the paroptical colours with the dioptrical of the second class will also be readily seen and followed up by every reflecting investigator. Here, as in those instances, we have to do with edges or boundaries; here, as in those instances, with a light, which appears at the outline. How natural, therefore, it is to conclude that the paroptical effects may be heightened, strengthened, and enriched by the dioptrical. Since, however, the luminous image actually shines through the medium, we can here only have to do with objective cases of refraction: it is these which are strictly allied to the paroptical cases. The subjective cases of refraction, where we see objects through the medium, are quite distinct from the paroptical.

  We have already recommended them on account of their clearness and simplicity.

  416

  The connexion between the paroptical colours and the catoptrical may be already inferred from what has been said: for as the catoptrical colours only appear on scratches, points, steel-wire, and delicate threads, so it is nearly the same case as if the light shone past an edge. The light must always be reflected from an edge in order to produce colour. Here again, as before pointed out, the partial action of the luminous image and the subduing of the light are both to be taken into the account.

  417

  We add but few observations on the subjective paroptical colours, because these may be classed partly with the physiological colours, partly with the dioptrical of the second order. The greater part hardly seem to belong here, but, when attentively considered, they still diffuse a satisfactory light over the whole doctrine, and establish its connexion,

  418

  If we hold a ruler before the eyes so that the flame of a light just appears above it, we see the ruler as it were indented and notched at the place where the light appears. This seems deducible from the expansive power of light acting on the retina (18).

  419

  The same phenomenon on a large scale is exhibited at sun-rise; for when the orb appears distinctly, but not too powerfully, so that we can still look at it, it always makes a sharp indentation in the horizon.

  420

  If, when the sky is grey, we approach a window, so that the dark cross of the window-bars be relieved on the sky; if after fixing the eyes on the horizontal bar we bend the head a little forward; on half closing the eyes as we look up, we shall presently perceive a bright yellow-red border under the bar, and a bright light-blue one above it. The duller and more monotonous the grey of the sky, the more dusky the room, and, consequently, the more previously unexcited the eye, the livelier the appearance will be; but it may be seen by an attentive observer even in bright daylight.

  421

  If we move the head backwards while half closing the eyes, so that the horizontal bar be seen below, the phenomenon will appear reversed. The upper edge will appear yellow, the under edge blue.

  422

  Such observations are best made in a dark room. If white paper is spread before the opening where the solar microscope is commonly fastened, the lower edge of the circle will appear blue, the upper yellow, even while the eyes are quite open, or only by half-closing them so far that a halo no longer appears round the white. If the head is moved backwards the colours are reversed.

  423

  These phenomena seem to prove that the humours of the eye are in fact only really achromatic in the centre where vision takes place, but that towards the circumference, and in unusual motions of the eyes, as in looking horizontally when the head is bent backwards or forwards, a chromatic tendency remains, especially when distinctly relieved objects are thus looked at. Hence such phenomena may be considered as allied to the dioptrical colours of the second class.

  424

  Similar colours appear if we look on black and white objects, through a pin-hole in a card. Instead of a white object we may take the minute light aperture in the tin plate of a camera obscura, as prepared for paroptical experiments.

  425

  If we look through a tube, the farther end of which is contracted or variously indented, the same colours appear.

  426

  The following phenomena appear to me to be more nearly allied to the paroptical appearances. If we hold up a needle near the eye, the point appears double. A particularly remarkable effect again is produced if we look towards a grey sky through the blades of knives prepared for paroptical experiments. We seem to look through a gauze; a multitude of threads appear to the eye; these are in fact only the reiterated images of the sharp edges, each of which is successively modified by the next, or perhaps modified in a parallactic sense by the oppositely acting one, the whole mass being thus changed to a thread-like appearance.

  427

  Lastly, it is to be remarked that if we look through the blades towards a minute light in the window-shutter, coloured stripes and halos appear on the retina as on the paper.

  428

  The present chapter may be here terminated, the less reluctantly, as a friend has undertaken to investigate this subject by further experiments. In our recapitulation, in the description of the plates and apparatus, we hope hereafter to give an account of his observations.

  Main contents table link

  XXXIII. Epoptical Colours.

  429

  We have hitherto had to do with colours which appear with vivacity, but which immediately vanish again when certain conditions cease. We have now to become acquainted with others, which it is true are still to be considered as transient, but which, under certain circumstances, become so fixed that, even after the conditions which first occasioned their appearance cease, they still remain, and thus constitute the link between the physical and the chemical colours.

  430

  They appear from various causes on the surface of a colourless body, originally, without communication, die or immersion ; and we now proceed to trace them, from their faintest indication to their most permanent state, through the different conditions of their appearance, which for easier survey we here at once summarily state.

  431

  First condition. — The contact of two smooth surfaces
of hard transparent bodies,

  First case: if masses or plates of glass, or if lenses are pressed against each other.

  Second case: if a crack takes place in a solid mass of glass, chrystal, or ice.

  Third case: if lamellae of transparent stones become separated.

  Second condition. — If a surface of glass or a polished stone is breathed upon.

  Third condition. — The combination of the two last; first, breathing on the glass, then placing another plate of glass upon it, thus exciting the colours by pressure; then removing the upper glass, upon which the colours begin to fade and vanish with the breath,

  Fourth condition. — Bubbles of various liquids, soap; chocolate, beer, wine, fine glass bubbles.

  Fifth condition. — Very fine pellicles and lamellae, produced by the decomposition — of minerals and metals. The pellicles of lime, the surface of stagnant water, especially if impregnated with iron, and again pellicles of oil on water, especially of varnish on aqua fortis.

  Sixth condition. — If metals are heated; the operation of imparting tints to steel and other metals,

  Seventh condition. — If the surface of glass is beginning to decompose.

  432

  First condition, first case. If two convex glasses, or a convex and plane glass, or, best of all, a convex and concave glass come in contact, concentric coloured circles appear. The phenomenon exhibits itself immediately on the slightest pressure, and may then be gradually carried through various successive states. We will describe the complete appearance at once, as we shall then be better enabled to follow the different states through which it passes.

  433

  The centre is colourless; where the glasses are, so to speak, united in one by the strongest pressure, a dark grey point appears with a silver white space round it: then follow, in decreasing distances, various insulated rings, all consisting of three colours, which are in immediate contact with each other. Each of these rings, of which perhaps three or four might be counted, is yellow on the inner side, blue on the outer, and red in the centre. Between two rings there appears a silver white interval. The rings which are farthest from the centre are always nearer together: they are composed of red and green without a perceptible white space between them.

 

‹ Prev