Genius
Page 30
A few days later he was eating in the student cafeteria when someone tossed a dinner plate into the air—a Cornell cafeteria plate with the university seal imprinted on one rim—and in the instant of its flight he experienced what he long afterward considered an epiphany. As the plate spun, it wobbled. Because of the insignia he could see that the spin and the wobble were not quite in synchrony. Yet just in that instant it seemed to him—or was it his physicist’s intuition?—that the two rotations were related. He had told himself he was going to play, so he tried to work the problem out on paper. It was surprisingly complicated, but he used a Lagrangian, least-action approach and found a two-to-one ratio in the relationship of wobble and spin. That was satisfyingly neat. Still, he wanted to understand the Newtonian forces directly, just as he had when he was a sophomore taking his first theory course and he provocatively refused to use the Lagrangian approach. He showed Bethe what he had discovered.
But what’s the importance of that? Bethe asked.
It doesn’t have any importance, he said. I don’t care whether a thing has importance. Isn’t it fun?
It’s fun, Bethe agreed. Feynman told him that was all he was going to do from now on—have fun.
Sustaining that mood took deliberate effort, for in truth he had given up none of his ambition. If he was floundering, so were far more distinguished theoretical physicists, committed to resolving the flaws in quantum mechanics. He had not forgotten his painful disagreement with Dirac that fall—his conviction that Dirac had turned squarely back toward the past and that an alternative approach must surely be possible. Early in 1947 Feynman let his friend Welton know how grand his plans had become. (Welton was now working at the permanent plant at Oak Ridge; many years later he would finish his career there, still affected by the peculiar disappointment that hobbled so many others who had crossed Feynman’s path at the wrong time.) Feynman said nothing about having fun. “I am engaged now in a general program of study—I want to understand (not just in a mathematical way) the ideas of all branches of theor. physics,” he wrote. “As you know I am now struggling with the Dirac Equ.” Despite what he told Bethe, he did make a connection between the axial wobble of a cafeteria plate and the abstract quantum-mechanical notion of spin that Dirac had so successfully incorporated in his electron.
Many years later Feynman and Dirac met one more time. They exchanged a few awkward words—a conversation so remarkable that a physicist within earshot immediately jotted down the Pinteresque dialogue he thought he heard drifting his way:
I am Feynman.
I am Dirac. (Silence.) It must be wonderful to be the discoverer of that equation.
That was a long time ago. (Pause.) What are you working on? Mesons.
Are you trying to discover an equation for them? It is very hard.
One must try.
More than anyone else, Dirac had made the mere discovery of an equation into a thing to be admired. To aficionados the Dirac equation never did quite lose its rabbit-out-of-a-hat quality. It was relativistic—it survived without strain the manipulations required to accommodate near-light velocities. And it made spin a natural property of the electron. Understanding spin meant understanding the deceptive unreality of some of physics’ new language. Spin was not yet as whimsical and abstract as some of the particle properties that followed it, properties called color and flavor in a half-witty, half-despairing acknowledgment of their unreality. It was still possible, barely, to understand spin literally: to view the electron as a little moon. But if the electron was also an infinitesimal point, it could hardly rotate in the classical fashion. And if the electron was also a smear of probabilities and a wave reverberating in a constraining chamber, how could these objects be said to spin? What sort of spin could come only in unit amounts or half-unit amounts (as quantum-mechanical spin did)? Physicists learned to think of spin not so much as a kind of rotation, but as a kind of symmetry, a way of stating mathematically that a system could undergo a certain rotation.
Spin was a problem for Feynman’s theory as he had left it in his Princeton thesis. The quantity of action in ordinary mechanics contained no such property. And his theory would be useless if he could not apply it to a spinning, relativistic electron—the Dirac electron. Among the obstacles blocking his path, this was one of the heaviest. No wonder his eye might have been drawn to things that spun—a cafeteria plate, for example, wobbling in a split-second trajectory. His next step was peculiar and characteristic. He reduced the problem to a skeleton, a universe with just one dimension (or two: one space and one time). This universe was merely a line, and in it a particle could take just one kind of path, back and forth, reversing direction like a crazed insect. Feynman’s goal was to begin with the method he had invented at Princeton—the summing of all possible paths a particle could take—and see whether he could derive, in this one-dimensional world, a one-dimensional Dirac equation. He jotted:
Feynman considered the path a particle would take in a one-dimensional universethat is, a particle restricted to moving back and forth on a line , always at the speed of light. He diagrammed the back-and-forth motion by visualizing the space dimension horizontally and the time dimension vertically: the passage of time is represented as motion upward on the page. In this toy model, he found that he could derive a central equation of quantum mechanics by adding the contributions made by all the possible paths a particle could take.
Geometry of Dirac Equ. 1 dimension
Prob = squ. of sum of contrib. each path
Paths zig zag at light velocity.
And he added something new—a diagram, purely schematic, for keeping track of the zigs and zags. The horizontal dimension represented his one spatial dimension, and the vertical dimension represented time. He successfully negotiated the details of this one-dimensional shadow theory. The spin of his particles implied a phase, like the phase of a wave, and he made some assumptions, only partly arbitrary, about what would happen to the phase each time a particle zagged. Phase was crucial to the mathematics of summing the paths, because paths would either cancel or reinforce one another, depending on how their phases overlapped. Feynman did not attempt to publish this fragment of a theory, excited though he was by the progress. The challenge was to extend the theory to more dimensions—to let the space unfold—and this he could not do, though he spent long hours in the library, for once reading old mathematics.
Shrinking the Infinities
Feynman’s frustration in these first postwar years mirrored a growing sense of impotence and defeat among established theoretical physicists. The feeling, at first private and then shared, remained invisible outside their small community. The contrast with the physicists’ public glory could hardly have been greater.
The cause was abstruse. The single difficulty at the core of this anguish was a mathematical tendency of certain quantities to diverge as successive terms of an equation were computed—terms that should have been vanishing in importance. Physically it seemed that the closer one stood to an electron, the greater its charge and mass would appear. The result: the infinities with which Feynman had been struggling since Princeton. It meant that quantum mechanics produced good first approximations followed by a Sisyphean nightmare. The harder a physicist pushed, the less accurate his calculations became. Such quantities as the mass of the electron became—if the theory were taken to its limit—infinite. The horror of this was hard to comprehend, and no glimmer of it appeared in popular accounts of science at the time. Yet it was not merely a theoretical knot. A pragmatic physicist eventually had to face it. “Thinking I understand geometry,” Feynman said later, “and wanting to fit the diagonal of a five foot square, I try to figure out how long it must be. Not being very expert I get infinity—useless… .”
It is not philosophy we are after, but the behavior of real things. So in despair, I measure it directly—lo, it is near to seven feet—neither infinity nor zero. So, we have measured these things for which our theory gives such absurd answers… .
/>
Experimental yardsticks for the electron were not so easy to come by, and it was a tribute to the original theory of Heisenberg, Schrödinger, and Dirac that first approximations matched any experimental results that the laboratories had produced so far. Better results were on the way, however.
Meanwhile, the scientists contemplating the state of theoretical physics descended into a distinct gloominess; in the aftermath of the bomb, their mood seemed postcoital.
“The last eighteen years”—the period, that is, since the quick birth of quantum mechanics—“have been the most sterile of the century,” remarked I. I. Rabi to a colleague over lunch in that spring of 1947, though Rabi himself was thriving as head of a fruitful group at Columbia.
“Theoreticians were in disgrace”—so it seemed to one especially precocious student of physics, Murray Gell-Mann.
“The theory of elementary particles has reached an impasse,” Victor Weisskopf wrote. Everyone had been struggling futilely, he said, especially since the war, and everyone had had enough of “knocking a sore head against the same old wall.”
Merely a few dozen men in mathematical difficulty—or the generation’s deepest crisis in theoretical physics. It was all the same. Weisskopf was preparing for an unusual gathering. A former president of the New York Academy of Sciences, Duncan MacInnes, had been nursing a conviction that modern-day conferences were growing too unwieldy. Hundreds of people would appear. Speakers were starting to cater to these diffuse audiences by delivering generalized and retrospective talks. As an experiment, MacInnes proposed an intimate meeting restricted to twenty or thirty invited guests, to take place in a relaxed, country-inn setting. With “Fundamental Problems of Quantum Mechanics” as a topic, he managed—though it took more than a year—to draw a select group in early June to an inn called the Ram’s Head, just opening for the summer season on New York’s Shelter Island, between the forks of eastern Long Island. Weisskopf was one of those charged with setting the agenda. Other participants were Oppenheimer, Bethe, Wheeler, Rabi, Teller, and several representatives of the younger generation, including Julian Schwinger and Richard Feynman.
So two dozen suit-jacketed physicists met on a Sunday afternoon on the East Side of New York and motored across Long Island in a rickety bus. Somewhere along the way a police escort picked them up, sirens wailing, and a banquet was arranged by a local chamber of commerce official who had been serving in the Pacific when, he felt, the atomic bomb saved his life. A ferry carried them across to Shelter Island, and to some of the physicists there was an air of unreality about it all. When they gathered for breakfast the next morning, they noticed the phrase “restricted clientele” on the menus and performed a quick head count: their group contained more Jews, they decided, than the inn’s dining room had ever seen. One New York newspaper reporter had come along, and he telephoned his report to the Herald Tribune: “It is doubtful if there has ever been a conference quite like this one… . They roam through the corridors mumbling mathematical equations, eat their meals amid the fury of technical discussions… .” Island residents, he wrote,
are reasonably confused about this sudden descent of science among them. The principal theory is that the scientists are busy making another type of atomic bomb, and nothing could be farther from the truth… .
Quantum mechanics is the never-never land of science, a world in which matter and energy become confused and where all the verities of day-to-day life become meaningless… .
To those sensitive to small breezes, it was beginning to seem that two of the younger men in particular, Schwinger and Feynman, were engaged in a gestation of fresh ideas. Schwinger mostly kept his own counsel during these three days. Feynman tried his methods out on a few people; a young Dutch physicist, Abraham Pais, watched him derive results at lightning speed with the help of sketchy pictures that left Pais baffled. On the last morning, after some words by Oppenheimer, Feynman was asked to give the whole group an informal description of his work, and he did, happily. No one really understood, but he left the memory of—as one listener recorded in his diary—“a clear voice, great rush of words and illustrative gestures sometimes ebullient.”
Above all, however, it was a conference dominated by news from experimenters, and particularly experimenters in the furnace Rabi was stoking at Columbia. The Columbia groups favored techniques that seemed homely and unspectacular in this era of the burgeoning particle accelerator, though their arsenal also included technologies fresh from the wartime Radiation Laboratory, magnetrons and microwaves. Willis Lamb had just shined a beam of microwaves onto a hot wisp of hydrogen blowing from an oven. He was trying to measure the precise energy levels of electrons in the hydrogen atom. He succeeded—the art of spectroscopy had never seen such precision—and he found a distinct gap between two energy levels that should have been identical. Should have been, that is, according to the clearest existing guide to hydrogen atoms and electrons, the theory of Dirac. That was in April. Lamb had gone to bed thinking about knobs and magnets and a bouncing spot of light from the galvanometer and the clear discrepancy between his experiment and Dirac’s theory, and he had awakened the next day thinking (accurately, as it turned out): Nobel Prize. News of what would soon be called the Lamb shift had already reached most of the Shelter Island participants before Lamb made a detailed report the first day. The theorists present had often repeated the truism that progress in science comes when experiments contradict theory. Rarely had any of them seen such a clean example (more often it was theory that contradicted theory). To Schwinger, listening, the point was that the problem with quantum electrodynamics was neither infinite nor zero: it was a number, now standing before them, finite and small. The alumni of Los Alamos and the Radiation Laboratory knew that the task of theoretical physics was to justify such numbers. The rest of the conference fed off a nervous euphoria, as it seemed to Schwinger: “The facts were incredible—to be told that the sacred Dirac theory was breaking down all over the place.” As the meeting adjourned, Schwinger left with Oppenheimer by seaplane.
Quantum electrodynamics was a “debacle,” another physicist said. Harsh assessments of a theory accurate enough for all but this delicate experiment. But after all, the physicists had known that the theory was fatally pocked with infinities. The experiment gave them real numbers to calculate, numbers marking the exact not-quite-rightness of the world according to Dirac.
Dyson
That fall Freeman Dyson arrived at Cornell. Some of Cornell’s mathematicians knew the work of a Briton by that name. It was hardly a common name, and mathematics was certainly known for its prodigies, but surely, they thought, this small, hawk-nosed twenty-three-year-old joining the physics department could not be the same man. Other graduate students found him genial but inscrutable. He would sleep late, bring his New York Times to the office, read it until lunch time, and spend the afternoon with his feet up and perhaps his eyes closed. Just occasionally he would wander into Bethe’s office. What they did there, no one knew.
Indeed, Dyson was one of England’s two or three most brilliant mathematical prodigies. He was the son of two supremely cultured members of the middle class who were late to marry and entering middle age when he was born. His father, George, composed, conducted, and taught music at a boys’ college in the south. Eventually he became director of England’s Royal College of Music. His mother, Mildred, trained as a lawyer, though she did not practice, and passed on to Freeman her deep love of literature, beginning with Chaucer and the poets of ancient Greece and Rome. As a six-year-old he would sit with encyclopedia volumes spread open before him and make long, engrossing calculations on sheets of paper. He was intensely self-possessed even then. His older sister once interrupted him to ask where their nanny was and heard him reply, “I expect her to be in the absolute elsewhere.” He read a popular astronomy book, The Splendour of the Heavens, and the science fiction of Jules Verne, and when he was eight and nine wrote a science-fiction novel of his own, Sir Phillip Roberts’s Erolunar Col
lision, with a maturely cadenced syntax and an adult sense of literary flow. His scientist hero has a knack for both arithmetic and spaceship design. Freeman, who did not favor short sentences, imagined a scientist comfortable with public acclaim, yet solitary in his work:
“I, Sir Phillip Roberts, and my friend, Major Forbes,” he began, “have just unravelled an important secret of nature; that Eros, that minor planet that is so well-known on account of its occasional proximity with the Earth, Eros, will approach within 3,000,000 miles of the Earth in 10 years 287 days hence, instead of the usual 13,000,000 miles every 37 years; and, therefore it may, by some great chance fall upon the Earth. Therefore I advise you to calculate the details of this happening!” …
When the cheers were over, and everybody had gone home, it did not mean that the excitement was over; no, not at all; everybody was making the wildest calculations; some reasonable, some not; but Sir Phillip only wrote coolly in his study rather more than usual; nobody could tell what his thoughts were.
He read popular books about Einstein and relativity and, realizing that he needed to learn a more advanced mathematics than his school taught, sent away to scientific publishers for their catalogs. His mother finally felt that his interest in mathematics was turning into an obsession. He was fifteen and had just spent a Christmas vacation working methodically, from six each morning until ten each evening, through the seven hundred problems of H. T. H. Piaggio’s Differential Equations. That same year, frustrated at learning that a classic book on number theory by I. M. Vinogradov existed only in Russian, he taught himself the language and wrote out a full translation in his careful hand. As Christmas vacation ended, his mother went for a walk with him and began a cautionary lecture with the words of the Latin playwright Terence: “I am human and I let nothing human be alien to me.” She continued by telling him Goethe’s version of the Faust story, parts one and two, rendering Faust’s immersion in his books, his lust for knowledge and power, his sacrifice of the possibility of love, so powerfully that years later, when Dyson happened to see the film Citizen Kane, he realized that he was weeping with the recognition of his mother’s Faust incarnate once again on the screen.