Book Read Free

Pihkal

Page 103

by Alexander Shulgin


  Mescaline has always been the central standard against which all other compounds are viewed. Even the United States Chemical Warfare group, in their human studies of a number of substituted phenethylamines, used mescaline as the reference material for both quantitative and qualitative comparisons. The Edgewood Arsenal code number for it was EA-1306. All psychedelics are given properties that are something like Rtwice the potency of mescalineS or Rtwice as long-lived as mescaline.S This simple drug is truly the central prototype against which everything else is measured. The earliest studies with the Rpsychotomimetic amphetaminesS had quantitative psychological numbers attached that read as Rmescaline units.S Mescaline was cast in concrete as being active at the 3.75 mg/kg level. That means for a 80

  kilogram person (a 170 pound person) a dose of 300 milligrams. If a new compound proved to be active at 30 milligrams, there was a M.U.

  level of 10 put into the published literature. The behavioral biologists were happy, because now they had numbers to represent psychological properties. But in truth, none of this represented the magic of this material, the nature of the experience itself. That is why, in this Book II, there is only one line given to Rdosage,S but a full page given to Rqualitative comments.

  Four simple N-modified mescaline analogues are of interest in that they are natural and have been explored in man.

  The N-acetyl analogue has been found in the peyote plant, and it is also a major metabolite of mescaline in man. It is made by the gentle reaction of mescaline with acetic anhydride (a bit too much heat, and the product N-acetyl mescaline will cyclize to a dihydroisoquinoline, itself a fine white crystalline solid, mp 160-161 !C) and can be recrystallized from boiling toluene. A number of human trials with this amide at levels in the 300 to 750 milligrams range have shown it to be with very little activity. At the highest levels there have been suggestions of drowsiness. Certainly there were none of the classic mescaline psychedelic effects.

  If free base mescaline is brought into reaction with ethyl formate (to produce the amide, N-formylmescaline) and subsequently reduced (with lithium aluminum hydride) it is converted to the N-methyl homologue.

  This base has also been found as a trace component in the Peyote cactus. And the effects of N-methylation of other psychedelic drugs have been commented upon elsewhere in these recipes, all with consistently negative results (with the noteworthy exception of the conversion of MDA to MDMA). Here, too, there is no obvious activity in man, although the levels assayed were only up to 25 milligrams.

  N,N-Dimethylmescaline has been given the trivial name of Trichocerine as it has been found as a natural product in several cacti of the Trichocereus Genus but, interestingly, never in any Peyote variant.

  It also has proven inactive in man in dosages in excess of 500

  milligrams, administered parenterally. This observation, the absence of activity of a simple tertiary amine, has been exploited in the development of several iodinated radiopharmaceuticals that are mentioned elsewhere in this book.

  The fourth modification is the compound with the nitrogen atom oxidatively removed from the scene. This is the mescaline metabolite, 3,4,5-trimethoxyphenylacetic acid, or TMPEA. Human dosages up to 750

  milligrams orally failed to produce either physiological or psychological changes.

  One additional manipulation with some of these structures has been made and should be mentioned. These are the analogues with an oxygen atom inserted between the aromatic ring and the aliphatic chain. They are, in essence, aminoethyl phenyl ethers. The first is related to mescaline itself, 2-(3,4,5-trimethoxyphenoxy)ethylamine. Human trials were conducted over the dose range of 10 to 300 milligrams and there were no effects observed. The second is related to trichocerine, N,N-dimethyl-2-(3,4,5-trimethoxyphenoxy)ethylamine. It was inactive in man over the range of 10 to 400 milligrams. Mescaline, at a dose of 420 milligrams, served as the control in these studies.

  97 4-MA; PMA; 4-METHOXYAMPHETAMINE

  SYNTHESIS: A solution of 27.2 g anisaldehyde and 18.0 g nitroethane in 300 mL benzene was treated with 2.0 mL cyclohexane and refluxed using a Dean Stark trap until H2O ceased to accumulate. A total of 3.8 mL

  was generated over about 5 days. After the removal of the solvent under vacuum, the viscous red oily residue was cooled and it spontaneously crystallized. This was ground under an equal volume of MeOH, producing lemon-yellow crystals of 1-(4-methoxyphenyl)-2-nitropropene. The final yield was 27.4 g of product with a mp of 45-46 !C. Recrystallization from 4 volumes MeOH

  did not improve the mp. An excellent alternate synthesis with a comparable yield involved letting a solution of equimolar amounts of the aldehyde and nitro-ethane and a tenth mole of n-amylamine stand in the dark at room temperature for a couple of weeks. The product spontaneously crystal-lized, and could be recrystallized from MeOH.

  The more conventional synthesis involving acetic acid as a solvent and ammonium acetate as a catalyst, produced a poor yield of the nitrostyrene and it was difficult to separate from the white diacetate of the starting anisaldehyde, mp 59-60 !C.

  A suspension of 32 g LAH in 1 L anhydrous Et2O was well stirred and 32.6 g 1-(4-methoxyphenyl)-2-nitropropene in Et2O was added at a rate that maintained a reflux. After the addition was complete, reflux was continued for 48 h. The reaction mixture was cooled, and the excess hydride was destroyed by the cautious addition of dilute H2SO4. The Et2O was separated, and extracted with additional aqueous H2SO4. A solution of 700 g potassium sodium tartrate in 600 mL H2O was added, and the pH brought to >9 with 25% NaOH. This aqueous phase was extracted with 3x200 mL CH2Cl2 which provided, after removal of the solvent, 32.5 g of a clear amber oil. This was dissolved in 100 mL

  IPA, neutralized with concentrated HCl, and then diluted with 300 mL

  anhydrous Et2O. There was obtained white crystals of 4-methoxyamphetamine hydrochloride (4-MA) that weighed, after filtering, Et2O washing and air drying, 22.2 g and had a mp of 208-209

  !C. The amphetamine metabolite, 4-hydroxyamphetamine hydrochloride (4-HA), was prepared by heating 5.0 g 4-MA in 20 mL concentrated HCl at 15 lbs/in. After recrystal-lization from aqueous EtOH, the product weighed 3.8 g and had a mp of 171-172 !C.

  DOSAGE: 50 - 80 mg.

  DURATION: short.

  QUALITATIVE COMMENTS: (with 60 mg) At just over an hour, there was a sudden blood pressure rise, with the systolic going up 55 mm. This was maintained for another hour. I found the effects reminiscent of DET, distinct after-images, and some parasthesia. I was without any residue by early evening (after 5 hours).

  (with 70 mg) It hit quite suddenly. I had a feeling of druggedness, almost an alcohol-like intoxication, and I never was really high in the psychedelic sense.

  EXTENSIONS AND COMMENTARY: This is another of the essential amphetamines, because of the appearance of the 4-methoxy group in two most important essential oils. These are the allylbenzene (estragole or esdragol) and the propenyl isomer (anethole). Their natural sources have been discussed under TMA.

  Two comments are warranted concerning 4-MA, one of scientific interest, and the other about a social tragedy.

  A major metabolites of amphetamine is 4-hydroxyamphetamine, from oxidation at the 4-position. It has been long known that with chronic amphetamine usage there is the generation of tolerance, which encourages ever-increasing doses to be used. When the daily load gets up around one or two hundred milligrams, the subject can become quite psychotic. The question was asked: might the chronic amphetamine user be methylating his endogenously produced 4-hydroxyamphet-amine to produce 4-methoxyamphetamine (4-MA), and maybe this is the agent that promotes the psychosis? To address this question, several studies were done with normal subjects, about 20 years ago, to see if 4-MA might produce a psychotic state (it didnUt at the highest levels tried, 75 milligrams) and to see if it was excreted to some extent unchanged in the urines of these normal subjects (it was seen even at the lowest dosage tried, 10 milligrams). It produced excitation and other central effects, it produced adrenergic press
or effects, and it consistently produced measur-able quantities of 4-MA in the urine, but it produced no amphetamine-like crazies. And since the administration of up to 600 milligrams of amphetamine produced no detectable 4-MA in the urine, this theory of psychotomimesis is not valid.

  On the tragic side, a few years later, 4-MA became widely distributed in both the US (as the sulfate salt) and in Canada (as the hydrochloride), perhaps in-spired by some studies in rats that had reported that it was second only to LSD in potency as a hallucinogen.

  The several deaths that occurred probably followed overdose, and it was clear that 4-MA was involved as it had been isolated from both urine and tissue during post mortems. It had been sold under the names of Chicken Power and Chicken Yellow, and was promoted as being MDA. I could find no record of a typical street dosage, but comments collected in association with the deaths implied that the ingested quantites were in the hundreds of milligrams. Rrecently, the ethoxy homologue, 4-EA, appeared on the streets of Canada. The dosage, again, was not reported. It was promptly illegalized there.

  The two positional analogues of 4-MA are known; vis., 2-MA and 3-MA.

  Their synthesis is straightforward, in imitation of that for 4-MA above. The meta-compound, 3-MA, has been metabolically explored in man, but no central effects were noted at a 50 milligram dose (2x25

  milligrams, separated by three hours). There appears to be no report of any human trial of 2-MA. The N-methyl homologue of 2-MA is a commercial adrenergic bronchodilator called Methoxyphenamine, or Orthoxine. It has been used in the prevention of acute asthma attacks in doses of up to 200 milligrams, with only slight central stimulation. The N-methyl homologues of 3-MA and 4-MA are known, and the latter compound is the stuff of a separate entry in this book.

  98 MADAM-6; 2,N-DIMETHYL-4,5-METHYLENEDIOXYAMPHETAMINE

  SYNTHESIS: A mixture of 102 g POCl3 and 115 g N-methylformanilide was allowed to stand for 0.5 h at room temperature during which time it turned a deep claret color. To this there was added 45 g 3,4-methylenedioxytoluene and the mixture was held on the steam bath for 3 h. It was then added to 3 L H2O. Stirring was continued until the oil which had separated had become quite firm. This was removed by filtration to give a greenish, somewhat gummy, crystalline solid, which was finely ground under 40 mL MeOH and again filtered giving, when air dried, 25 g of an almost white solid. Recrystallization of a small sample from methylcyclopentane gave ivory-colored glistening crystals of 2-methyl-4,5-methylenedioxybenzaldehyde with a mp of 88.5-89.5 !C. In the infra-red, the carbonyl was identical to that of the starting piperonal (1690 cm-1) but the fingerprint was different and unique, with bands at 868, 929, 1040 and 1052 cm-1.

  A solution of 23 g 2-methyl-4,5-methylenedioxybenzaldehyde in 150 mL

  nitroethane was treated with 2.0 g anhydrous ammonium acetate and heated on the steam bath for 9 h. The excess solvent was removed under vacuum to give a dark yellow oil which was dissolved in 40 mL

  hot MeOH and allowed to crystallize. The solids were removed by filtration, washed modestly with MeOH and air dried, to give 21.2 g of 1-(2-methyl-4,5-methylenedioxyphenyl)-2-nitropropene as beautiful yellow crystals with a mp of 116-118 !C. Recrystallization of an analytical sample from MeOH gave lustrous bright yellow crystals with a mp of 120-121 !C. Anal. (C11H11NO4) C,H,N.

  A suspension of 54 g electrolytic elemental iron in 240 g glacial acetic acid was warmed on the steam bath, with frequent stirring.

  When the reaction between them started, there was added, a portion at a time, a solution of 18.2 g

  1-(2-methyl-4,5-methylenedioxyphenyl)-2-nitropropene in 125 mL warm acetic acid. The orange color of the nitrostyrene solution became quite reddish, white solids of iron acetate appeared, and a dark tomato-colored crust formed which was continuously broken back into the reaction mixture. Heating was continued for 1.5 h, and then all was poured into 2 L H2O. All the insolubles were removed by filtration, and these were washed well with CH2Cl2. The filtrate and washes were combined, the phases separated, and the aqueous phase extracted with 2x100 mL additional CH2Cl2. The combined organics were washed with 5% NaOH, and the solvent removed under vacuum. The residue weighed 15.9 g, and was distilled at 90-110 !C at 0.4 mm/Hg to give 13.9 g of 2-methyl-4,5-methylenedioxyphenylacetone that spontaneously crystallized. A small sample from methylcyclopentane had a mp of 52-53 !C, another from hexane a mp of 53-54 !C, and another from MeOH a mp of 54-55 !C. Anal. (C11H12O3) H; C calcd, 68.73; found 67.87, 67.84.

  To a stirred solution of 30 g methylamine hydrochloride in 200 mL warm MeOH there was added 13.5 g 2-methyl-4,5-methylenedioxyphenylacetone followed, after returning to room temperature, by 7 g sodium cyanoborohydride. There was added HCl as needed to maintain the pH at approximately orange on external damp universal pH paper. After a few days, the reaction ceased generating base, and all was poured into 2 L

  dilute H2SO4 (caution, HCN evolved). This was washed with 3x75 mL

  CH2Cl2, made basic with 25% NaOH, and the resulting mixture extracted with 3x100 CH2Cl2. The pooled extracts were stripped of solvent under vacuum and the residue, 15 g of a pale amber oil, was distilled at 95-110 !C at 0.4 mm/Hg. There was obtained 12.3 g of a white oil that was dissolved in 60 mL IPA, neutralized with approximately 5.5 mL

  concentrated HCl, and crystals of the salt formed spontaneously.

  These were loosened with the addition of another 10 mL IPA, and then all was diluted by the addition of an equal volume of anhydrous Et2O.

  The white crystals were separated by filtration, Et2O washed, and air dried to give 14.1 g of 2,N-dimethyl-4,5-methylenedioxyamphetamine hydrochloride (MADAM-6) as a brilliant white powder with a mp of 206-207 !C. Anal. (C12H18ClNO2) C,H.

  DOSAGE: greater than 280 mg.

  DURATION: unknown.

  QUALITATIVE COMMENTS: (with 180 mg) There is a hint of good things there, but nothing more than a hint. At four hours, there is no longer even a hint.

  (with 280 mg) I took 150 milligrams, waited an hour for results, which was niente, nada, nothing. Took supplements of 65 milligrams twice, an hour apart. No effect. Yes, we giveth up.

  EXTENSIONS AND COMMENTARY: The structure of MADAM-6 was designed to be that of MDMA, with a methyl group attached at what should be a reasonably indifferent position. In fact, that is the genesis of the name. MDMA has been called ADAM, and with a methyl group in the 6-position, MADAM-6 is quite understandable. And the other ortho-position is, using this nomenclature, the 2-position, and with a methyl group there, one would have MADAM-2. I should make a small apology for the choice of numbers. MDMA is a 3,4-methylenedioxy compound, and the least ambiguous numbering scheme would be to lock the methylenedioxy group inescapably at the 3,4-place, letting the other ring position numbers fall where they may. The rules of chemistry ask that if something is really a 3,4,6-orientation it should be renumbered as a 2,4,5-orientation. Let's quietly ignore that request here.

  How fascinating it is, that a small methyl group, something that is little more than one more minor bump on the surface of a molecule that is lumpy and bumpy anyway, can so effectively change the action of a compound. A big activity change from a small structure change usually implies that the bump is at a vital point, such as a target of metabolism or a point of critical fit in some receptor site. And since 6-MADAM can be looked upon as 6-bump-MDMA, and since it is at least 3x less potent than MDMA, the implication is that the action of MDMA requires some unbumpiness at this position for its particular action. There are suggestions that the body may want to put a hydroxyl group right there (a 6-hydroxy-dopamine act), and it couldnUt if there was a methyl group right there. The isopropylamine side chain may want a certain degree of swing-around freedom, and this would be restricted by a methyl bump right next to it. And there are all kinds of other speculations possible as to why that position should be open.

  Anyway, MADAM-6 is not active. And the equally intriguing positional isomer, the easily made MADAM-2, will certainly contribute to these speculations. A quiz for the reader! Will 2,N-dimethyl
-3,4-methylenedioxyamphetamine (MADAM-2) be: (1) Of much reduced activity, akin to MADAM-6, or (2) Of potency and action similar to that of MDMA, or (3) Something unexpected and unanticipated? I know only one way of finding out. Make the SchiffsU

  base between piperonal and cyclohexylamine, treat this with butyl lithium in hexane with some TMEDA present, add some N-methylformanilide, convert the formed benzaldehyde to a nitrostyrene with nitroethane, reduce this with elemental iron to the phenylacetone, reduce this in the presence of methylamine with sodium cyanoborohydride, then taste the result.

  99 MAL; METHALLYLESCALINE;

  3,5-DIMETHOXY-4-METHALLYLOXYPHENETHYLAMINE) SYNTHESIS: To a solution of 5.8 g of homosyringonitrile (see under ESCALINE for its preparation) in 50 mL of acetone containing 100 mg of decyltriethylammonium iodide there was added 7.8 mL methallyl chloride followed by 6.9 g of finely powdered anhydrous K2CO3. The suspension was kept at reflux by a heating mantle, with effective stirring.

  After 6 h an additional 4.0 mL of methallyl chloride was added, and the refluxing was continued for an additional 36 h. The solvent and excess methallyl chloride was removed under vacuum and the residue was added to 400 mL H2O. This solution was extracted with 3x75 mL CH2Cl2.

  The extracts were pooled, washed with 2x50 mL 5% NaOH, and the solvent removed to provide a dark brown oil. This was distilled at 120-130 !C

  at 0.4 mm/Hg to provide 6.1 g of

  3,5-dimethoxy-4-methyallyloxyphenylacetonitrile as a lemon-colored viscous oil. Anal. (C14H17NO3) C,H.

 

‹ Prev