Book Read Free

Life's Greatest Secret

Page 50

by Matthew Cobb


  at the Moscow Biochemistry Congress 185–6

  reaction to The Double Helix 108

  reaction to What is life? 17

  rhino 239

  whale 239, 239n

  phages

  defined 317

  DNA amplification using 230

  genome sequencing 229

  Hershey and Chase’s experiments 67–8

  introduction of SV40 genes 279

  Jacob’s work on 155

  reproduction and mRNA 166–7

  T4, studies 161–2, 192

  von Neumann’s enthusiasm for 31–2

  phage course, Cold Spring Harbor 151, 183

  phage genetics, Watson and 97

  phage group

  conservatism of 63, 65–6, 70

  membership 65, 189, 215–16

  Nobel Prizes 215

  reception of Hotchkiss’s data 60

  on viruses and genes 8

  phenylalanine

  combination of Us coding for 174, 182, 184, 186, 190, 198–9

  redundancy in coding for 208

  UUC coding for 198, 205–6, 211

  UUU triplet coding for 209

  philosophers

  on cybernetics 76–7, 144

  on the definition of the gene 244

  on the nature of information 144, 149, 202–3, 297–303

  on the significance of epigenetics 265–6

  ‘photo 51’ 104–5

  physicochemical hypothesis 293–4

  physics, apparent contradiction by biology 13

  ‘The Physics of living matter’ Conference, 1946 32–3

  Pickstone, John 309

  Pilgrim Trust lectures 50–1, 56

  Pitts, Walter 24, 86

  placenta, origins 245

  plants

  epigenetic changes 257–9

  genetically modified 269–71

  plasticity and epigenetics 255, 259

  Pleurobrachia bachei 239

  PNAS (Proceedings of the National Academy of Sciences)

  Brenner’s demolition of overlapping codes 124

  discovery of ‘split genes’ 221

  first breaking of the genetic code 183, 186

  Ochoa’s polynucleotide work 196

  Pauling’s triple helix model 104

  rejects Gamow’s letter 114

  Szilárd declines to sponsor Nirenberg 183

  pneumococci

  transformation in 34–40, 44, 50, 66, 132

  varying virulence of R and S strains 36–7

  pneumonia mortality 35–6

  Pollister, Arthur 55, 58, 62

  poly(A) tail, mRNA 297

  polydactyly 2

  Polynesian populations 241

  polynucleotides

  copolynucleotides 191

  Crick’s critique of 205–6

  Nirenberg’s approach 176, 179, 184, 198

  Ochoa’s group’s approach 189–91, 198

  poly(A) problems 189–90

  poly(U) coding for phenylalanine 174, 181–2, 199

  work by other groups 189–90, 189n

  see also oligonucleotides

  polysaccharides, absent from transforming principle 41

  Pontecorvo, Guido 161, 244

  Portier, Paul 224

  pre-mRNA 222

  prion proteins 253–4

  probability theory and communication 25

  Proceedings of the National Academy of Sciences see PNAS

  prokaryotes

  absence of code variations 227

  discovery of Archaea among 238–9

  proline, codes for 185, 198, 205–6, 208, 212

  promoter sequences 243

  proteins

  bizarre 278

  contamination alleged in transforming principle 41–2, 56, 60, 64, 70

  criteria for the heredity vehicle 61–2

  defined 317

  genes assumed to be 6–9, 55, 69, 98

  information transfers with nucleic acids 136

  Koltsov’s model of chromosomes 6

  prions as infectious agents 253–4

  protein-encoding human genes 242

  protein folding

  α-helix structure 95, 97, 100, 105

  as function of amino acid sequence 133, 263–4, 294

  and molecular chaperones 263, 265, 294

  sickle-cell anaemia 127

  protein function

  determined by amino acid sequence 133

  likely emergence 291

  protein synthesis

  adaptor hypothesis 121, 135, 209

  amino acid sequence in 128–9

  control of, as the role of genes 131

  Crick’s ‘central dogma’ lecture 130–1, 135–6, 140–1, 153, 239

  Crick’s ‘ideas on’ note 136, 137f

  cybernetic thinking and 159

  and the genetic code 153

  information transfer in 168–9, 251

  mechanism in eukaryotes xi negative feedback control 151–4, 153–5, 157, 168

  Nirenberg’s work on 174–91

  nucleic acid involvement 121–2, 128, 132

  repressor hypothesis 160–1, 168

  ribosome involvement 134, 165–7, 180

  role of mRNA 169, 184

  Rqc2p involvement 264–5

  site of 116, 134

  see also cell-free protein synthesis

  protein taxonomy 140–1

  proton gradients 287

  Prusiner, Stanley 253–4

  pseudogenes 245–8

  Ptashne, Mark 171

  purines (adenine and guanine)

  distinguished from pyrimidines 317

  poly(A) stability problems 189–90

  poly(A) tail, mRNA 297

  ratio of pyrimidines to 42, 91, 102, 106, 109

  ultraviolet response 42

  see also bases

  pyrimidines (cytosine and thymine or uracil)

  cytosine deamination 290

  cytosine methylation 256–8

  distinguished from purines 317

  negative feedback control of biosynthesis 154

  ratio of purines to 42, 91, 102, 106, 109

  of RNA, spontaneous appearance 289

  ultraviolet response 42

  see also bases

  pyrrolysine 225

  Q

  quantum physics and biology 11–12, 16, 291

  Quastler, Henry

  on genetics and information 81, 142, 144–5, 201–2

  Information Theory symposium 84–5

  R

  Rad Lab project 24, 27

  radiation effects on tissues 142

  radioactive tracers

  in cell-free protein synthesis 173–4, 178, 181–2

  labelled amino acids into proteins 134–5

  messenger RNA (mRNA) 212

  for phage DNA and protein 66, 68

  in Sanger sequencing 228

  transfer RNA (tRNA) 209

  see also isotopic labelling

  Randall, John

  MRC report 103–4

  recruitment of Franklin 95–6

  relations between King’s and Cambridge 98–101

  as Wilkins’s supervisor at King’s 89

  reading frames 192–3, 213, 223, 317

  recombinant DNA 231, 279–80, 285

  Redfield, Rosie 276

  regulation of biotechnologies 284–5

  regulator genes 160, 168–9, 242–3

  regulatory framework idea 157

  Reith Lectures 82, 146

  religion, Schrödinger’s views 16

  replicating systems

  DNA replication 163–4, 235

  origin 288

  self-reproducing automata 32, 80, 119, 146

  repressors 156–61, 168–9, 171, 243, 257, 317

  research

  multinational and multidisciplinary teams 311–12

  spending in wartime 20

  restriction enzymes 230–1, 279, 310

  retroviruses 245–6, 250–2


  reverse transcriptases 251–2

  reviews

  Cybernetics or Control and Communication in the Animal and the Machine 76–7

  What is life? 17

  ribosomes

  defined 317

  in protein synthesis 134, 165–7, 180

  Rqc2p involvement 264–5

  Rich, Alexander

  double-stranded RNA 274

  on Gamow’s contribution 119

  genetic code work 122, 175

  on Nirenberg’s contribution 183, 189

  risk see dangers

  RNA (ribonucleic acid)

  absent from transforming principle 40

  CRISPR application to 284

  defined 317

  DNA advantages over 290–1

  enzymatic activities 288

  identification of sequences 118

  imagined role in the immune response 140

  involvement in gene regulation 243

  involvement in protein synthesis 58, 71–2, 116, 184

  numbering of sugars and strands 212

  presence in tobacco mosaic virus 64

  as single or double helix 118, 274

  synthetic versions 174–7, 208–10

  transgenerational epigenetic factors 258–9

  uracil replacing thymine in 123

  variety of forms and roles 243, 289

  see also messenger RNA; transfer RNA

  RNA interference (RNAi) 282

  RNA splicing/gene splicing 222–3, 300, 302

  RNA Tie Club 118–21, 124, 217

  RNA viruses see retroviruses; tobacco mosaic

  ‘RNA world’ hypothesis 288–91

  Roberts, Richard 201, 205–6, 221, 223

  Romesberg, Floyd 278

  Ronwin, Edward 103

  Rosenblueth, Arturo 22–3

  Roundup Ready soybean 270

  Rous, Peyton 48

  Rowen, John 103

  Royal Society 50–1, 56, 81

  Royaumont Abbey colloquium 202, 205

  Rutgers University, Symposium on Informational Macromolecules, 1962 204–5

  S

  sales of key manuscripts 25, 111, 194

  Sanger, Fred

  double Nobel Prize 228

  human genome project and 233

  insulin sequencing 120

  Sanger sequencing 228–9, 231

  Sarkar, Sahotra 300–1

  Schneider, Tom 273

  Schrödinger, Erwin

  code-script idea 13–15

  concerns over quantum effects 13, 291

  Crick’s letter to 113

  influence 15–16, 75

  one-dimensional aperiodic crystals 15–17, 80, 113

  What is life? book 16–19, 30, 32, 113, 268

  What is life? lecture 11–15

  Schultz, Jack 9, 42, 46, 58

  Schwartz, Drew 122

  science

  changes in the practice of 310–11

  parallels with the organisation of work 309

  social dynamics 183, 188–9

  Science (journal)

  Celera version of human genome 233

  on cybernetics 76, 154

  Eck’s speculations on the genetic code 201

  on ENCODE’s claims 247

  Miller-Urey experiments 286

  report of an award to Avery 50

  report of arsenic-based life 276

  on sickle-cell anaemia 126

  synthetic organism claim 267

  transcription factor binding sites 296

  on Wiener’s mathematics 74

  Scientific American 16, 82, 119

  Crick’s article in 131–2, 135, 139

  scrapie 253–4

  second law of thermodynamics 12, 27–8, 30, 75

  Seed, Willy 94

  selective breeding of sheep 1

  selenocysteine 225

  self-reproducing automata 32, 80, 119, 146

  semi-synthetic organisms 278

  sequence hypothesis 133, 137, 263, 294

  sex determination and temperature 300, 304

  ‘shadow biosphere’ 276–7

  Shakespeare, William 272

  Shannon, Claude E.

  approach contrasted with Wiener’s 77–9

  calculations not applicable to biology 202

  contribution to cybernetics 77–9, 81

  definition of information 78, 82, 144, 147, 298–9

  early work at Bell Laboratories 25–7

  exchanges with Wiener 78–9

  on human information content 84

  measures of information 298

  The Theory of Communication book 77, 79f

  Sharp, Phillip 223

  Sharples centrifuge 39–40

  sheep, selective breeding 1

  shotgun sequencing 232

  sickle-cell anaemia 126–7, 132, 165

  side-effects see dangers

  Signer, Rudolf 92–93, 99

  Slyke, Van 46

  Smadel, Joseph 183

  social deprivation 255–6

  social dynamics of science 183, 188–9, 217

  Society for Experimental Biology 53, 92, 130, 147

  Society of American Microbiologists 60

  Spanish Flu virus 280–1

  species

  base pair frequencies 295

  codon bias in 294–5

  proportions of DNA bases 62, 90

  ‘specific patterns’ 139

  specificity

  doubts over DNA’s 42, 47, 60, 64, 70, 106

  meanings of 318

  nucleotide sequence variation and 57–8

  sperm, DNA content 60

  Speyer, Joe 191, 209

  spliceosomes 222

  ‘split genes’ discovery 221, 223

  Stacey, M(aurice) 54–5

  Stahl, Frank 163–5

  Stanley, Wendell 8, 46, 64

  start codon

  methionine and 213, 316

  variants 225

  Stedman, Edgar and Ellen 55, 58

  Stegmann, Ulrich 300

  Stent, Gunther 63, 189, 216

  Stern, Kurt 70–1

  Stokes, Alex 98

  stop codon and variants 213, 224–6, 277

  Sturtevant, Alfred 4

  sulfur, radioactive 68–9

  Sulston, John 231

  Sutherland, John 289

  Sutherland, Norma 96

  Sutton, Walter 3–4, 60

  Svedberg, Theodor ‘The’ 39

  symbiotic origin, mitochondria 224

  Symons, Robert 279

  Symposium on submicroscopical morphology in protoplasm 96–7

  syncytin 245

  synthetic biology 277–9, 313–14

  ‘synthetic genetics’ 275

  systematic invention phase 309–10

  systems biology 307

  Szathmáry, Eörs 299

  Szilárd, Leo

  acknowledged by Monod and Jacob 160

  declines to sponsor Nirenberg 183

  ‘derepression of repression’ 257

  Maxwell’s Demon and 27–8, 30, 76

  meeting with Monod and Jacob 151–2

  negative feedback in protein synthesis 151–4, 156–7

  T

  target theory 5–6

  Tatum, Ed 10–11, 204, 215, 243–4

  Taylor, Harriett 51, 55, 59, 69

  as Ephrussi-Taylor 62–3, 310

  Teleological mechanisms meeting, 1946 30

  Teleological Society 28

  ‘teleology’ paper 23, 149

  teleporting life 268–9

  Teller, Edward 117, 120

  Temin, Howard 250–2, 264

  temperature and sex determination 300, 304

  templates

  DNA strands as 111

  Gamow’s genetic code idea 114

  genes acting as 72

  protein strands as 6

  protein synthesis and 121

  template RNA see messenger RNA

  terminology
r />   Benzer on 161–2, 203

  Brenner on 203

  Lederberg on 87, 161, 244

  test tubes see cell-free protein synthesis

  tetranucleotide hypothesis (Levene’s) 7, 42, 51, 54, 62, 90

  textbook accounts 67–8

  Theobald, Douglas 227

  theoretical approaches to the genetic code 115–16, 143, 174–5, 201, 214–15

  Theoretical Physics, Ninth Washington Conference, 1946 32–3

  The Theory of Communication, by Claude Shannon and Warren Weaver 77, 79f

  thermodynamics, second law 12, 27–8, 30, 75

  Thermus aquaticus (Taq) 230

  Three-Man Paper (On the nature of gene mutation and gene structure) 6, 13, 17–19

  thymine see pyrimidines

  Timofeef-Ressovsky, Nikolai 5, 27

  see also Three-Man Paper

  Tissières, Alfred 177, 186

  Titov, Gherman 185

  tobacco mosaic virus (TMV)

  amino acid sequence 174

  as an RNA virus 136

  claimed to be a protein crystal 8, 64

  Gamow on overlapping codes and 122–3

  Jim Watson’s work on 100, 108

  protein synthesis in 132, 180–1

  Rosalind Franklin’s work on 108

  Tomkins, Gordon 172, 173, 175, 182–3

  ‘Mr Tompkins’ 113–14

  transcription 318

  transcription factors 243–4, 296, 318

  transfer RNA (tRNA)

  adaptor hypothesis and 135, 209

  anticodon idea 211–12

  Cold Spring Harbor 1966 Symposium 214

  defined 318

  discovery 135

  Nirenberg’s work on 191

  radiolabelled 209

  synthetic forms 277

  transformation

  in E. coli 51–2, 56, 61, 63

  Griffith’s discoveries on 37

  in pneumococci 36–9, 63

  transforming principle

  alcohol extraction 41

  allegations of protein contamination 41–2, 56, 60, 64, 70

  identification as a nucleic acid 38, 44

  identification as DNA 41, 43–4, 46–7, 49, 52

  induction of mutations by 39

  ‘likened to a gene’ 43–4

  named by Avery’s group 37

  precipitation 40

  in viral infections 67

  transgenerational effects 256–9, 261, 263

  translation 291–2, 318

  transposons 245–6, 259

  triple helix models 99–100, 104, 106

  tRNA see transfer RNA

  Troland, Leonard 7, 15, 18

  Tukey, John W. 78

  Turing, Alan 26, 74, 80–1

  U

  U-2 and U3 joke 197

  UGA (opal) codon 213, 224–5, 318

  ultracentrifuges 39, 41, 163, 167

  ultraviolet radiation 42

  Umbarger, Edwin 154–5

  uncertainty principle 13

  unit cell, DNA crystals 100, 104–5

  universal machine concept 26, 80

  universe, heat death 12

  unnatural amino acids 225, 277–8

  unnatural base pairs 277–8

  uracil (U)

  preponderance 199, 201–2, 204

 

‹ Prev