Book Read Free

Unlocking the Sky

Page 3

by Seth Shulman


  “What his hearers thought of this discourse I do not remember,” Langley writes, “but I have heard that the sun rose again the next morning.”

  PART I

  REWRITING AVIATION HISTORY

  ONE

  INTRIGUE AT HAMMONDSPORT

  If the Langley aerodrome flies, several chapters of aviation history will have to be rewritten.

  —BUFFALO EXPRESS (BUFFALO, N.Y.), MAY 20, 1914

  The arrival of three imposing wooden crates has nearly halted work at the bustling Curtiss Aeroplane Company in Hammondsport, New York. It is a chilly afternoon early in April 1914 and, far upstate, spring has just begun to nudge the surrounding Finger Lakes region into bloom.

  Workers haul the huge, pine-planked boxes, one by one, into the open courtyard outside the company’s collection of gray hangars. As they do, more than half of the plant’s one hundred employees stream outside to get a better look. Crates of parts, tools, and equipment arrive at this airplane factory almost every day. But today’s boxes—sent by rail from Washington, D.C.—are an unprecedented delivery, the subject of hushed gossip at the plant for weeks.

  Henry Kleckler, the shop foreman, wipes the grease from his hands and steps into the courtyard to help as his boss, Glenn Hammond Curtiss, approaches the largest crate. Curtiss is tall and trim, with a reserved intensity. He is just thirty-six years old, but his thinning hair and serious countenance give him an ageless air of authority. He is also a corporate executive more comfortable on the shop floor than in a boardroom. His easy rapport with his workers is obvious in the way they enthusiastically surround him.

  Now, as Curtiss pries off the crate’s big wooden top with the back of a hammer, the crowd of assembled mechanics, carpenters, and engineers falls silent. Inside the box lie the crumpled wings of the most maligned airplane of all time: Samuel Langley’s aerodrome, his infamous seminal attempt to create a piloted, heavier-than-air flying machine.

  The first peek is not encouraging. Packed over a decade ago according to Langley’s instructions, the contents appear a terrible mess, full of twisted metal, broken wood, and tattered fabric. But as the knowledgeable workers draw closer to inspect the pieces, their initial dismay turns to admiration. Though old and badly damaged, the antique machine’s craftsmanship is unmistakable. The wooden ribs of the aircraft’s wings are not only exquisitely joined; they have been hollowed out to make the craft lighter. Unlike the canvas muslin used on most modern airplanes in 1914 the wings of Langley’s plane are sheathed in a fine skin of now-rotted, oiled silk. Curtiss calls it the most beautiful piece of work he has ever seen.

  Now the hard part must begin. At the behest of the Smithsonian Institution, a team at the Curtiss plant will try to restore the machine to its original condition. The goal: to see whether, if properly launched, Langley’s plane can fly.

  Confronted by the remains of the aerodrome, the workers recognize the scale of the painstaking restoration before them and wonder skeptically whether the battered and unconventional-looking machine will ever get aloft. Focused on the immediate problems of reconstruction, they are all but blind to the broader implications of tampering with the judgment of history. No one present realizes that before they are through, their efforts will ignite one of the most bitter controversies in the annals of aviation.

  How strange are the whims of history and how difficult to predict and understand. Few could have expected the extent of ridicule Langley suffered for the aerodrome’s failure or that, after languishing for more than ten years in the back of a carpentry shop at the Smithsonian Institution, the crumpled aircraft would once again become the subject of intense interest. Fewer still could ever have foreseen the aerodrome’s voyage to this unlikely destination, rural and remote, some fifty miles southeast of Rochester, New York.

  For generations, the Finger Lakes region has been known as New York State’s wine country, home to hundreds of acres of vineyards nestled among tree-covered hills that slope to the edges of a series of long and narrow freshwater lakes. In this bucolic area, Mark Twain spent most of his summers and wrote some of his best-known works, including Tom Sawyer and The Adventures of Huckleberry Finn. The towns here exude an upright American charm; peaceful, but too industrious-seeming to feel sleepy. In the heart of the region, the small town of Hammondsport is no exception, with a postcard village square lined with substantial brick storefronts.

  Strangely enough, since the earliest years of the twentieth century, this improbable spot, far from any major metropolitan area, has seen a bustle of activity that will forever mark it as the “cradle of aviation.” In fact, by 1914, Glenn Curtiss has amassed in Hammondsport the best and largest collection of skilled aircraft mechanics to be found anywhere in the world. As a result, the town’s residents have never felt so much at the center of things as they do now. Over the past several years, it seems that everyone with an interest in airplanes—from inventor Alexander Graham Bell to industrialist Henry Ford—has made their way here to the Curtiss Aeroplane Company.

  “Everybody in Hammondsport has an expert’s familiarity with aeroplanes,” gushes a reporter from Joseph Pulitzer’s New York Sun on assignment to Hammondsport in the spring of 1914. “The most astonishing experience of the visitor is to hear an eight-year-old child talk about the virtues of flat surfaces as compared to curved surfaces with the glib sureness of an expert,” he writes, “or to engage a charming young woman in conversation…and have her give a learned dissertation on the thrust of propellers.”

  The catalyst for all this interest, the magnet for all this excitement and industry, is the quietly irrepressible Glenn Curtiss. Despite his relative anonymity today, Curtiss surely belongs in the pantheon of America’s greatest entrepreneurial inventors. With uncanny regularity, his remarkable career led him to the heart of some of the most important pioneering developments in the history of aviation. In the course of a few short decades, Curtiss arguably contributed more to the modern airplane than anyone before or since, including: the first public flight in the United States, the first commercially sold airplane, the remarkable first flight from one American city to another, the issuance of the first U.S. pilot license, to name just a few momentous breakthroughs. Ask almost anyone today and they will likely tell you that these milestones were achieved by the Wright brothers, the legendary team that most of us—nearly a century hence—immediately associate with the dawn of aviation. However, the first public flight in America was not made by the Wrights, whose obsession with keeping their research secret shrouded the early years of aviation in internecine intrigue and legal wrangling. Rightful claim to all the above achievements belongs to Curtiss.

  Like the Wright brothers, Curtiss ended his formal education in the eighth grade. But despite the lack of schooling, historians credit Curtiss with a central role in no fewer than five hundred aviation innovations. Even more impressive, many of his seminal contributions are still in use in airplanes today, including everything from wing flaps and retractable landing gear to the enclosed cockpit and the design of the pontoons used on seaplanes. By contrast, virtually none of the Wright brothers’ aeronautical designs has stood the test of time. Most of the Wrights’ practical engineering contributions were obsolete by as early as 1912.

  If Curtiss’s phenomenal creativity was exceeded by anything, it was by his energy and drive. His competitive spirit was evident from the start of his career. A national bicycle champion by the age of twenty, he went on to win world renown as “the fastest man alive” by riding a motorcycle of his own design at a record-breaking 136 miles per hour in 1907. Curtiss’s talent and daring proved a formidable combination and he would need both to make his greatest contribution: opening the sky to the commercially viable modern airplane.

  First and foremost here in Hammondsport in 1914, though, Glenn Curtiss is a local hero. Indeed within a radius of a hundred miles around Hammondsport, Curtiss and his aeroplanes have become an almost ubiquitous topic of conversation. Everybody seems to feel a proprietary interes
t in his career. His portrait even hangs in the local post office, as it does in the window of Hoyt’s pharmacy, with the caption “He’s good enough for us.”

  To some extent, Curtiss has been a local favorite since he was a boy. He was an enthusiastic and energetic child and, sadly, his father and his grandfather, both Hammondsport residents, had died by the time Curtiss was four years old. As a result, many in town took a special interest in him. Jim Smellie, a local shopkeeper and friend, helped coach Curtiss as a bicycle racer. And at a key juncture in Curtiss’s career when he was twenty-one, Smellie, who was expanding his general store, offered to turn over to Curtiss his bicycle repair and spare parts business. On the spot, Curtiss decided to open a bicycle shop in Hammondsport. Mrs. Malinda Bennitt, a wealthy widow in town who had always been fond of him, gave Curtiss rent-free use of a narrow storefront on the town square to help him get a start in business.

  Hammondsport would never be the same.

  Building upon his passion for bicycle racing, Curtiss moved quickly from repairing bicycles to building and selling them—and then to experimenting with the novel idea of motorized cycles. Locals could hear him for miles around careening wildly along dirt roads on the outskirts of town on an early belt-driven prototype he called the “Happy Hooligan.”

  Curtiss learned remarkably quickly from his early experiments. Soon he was not only building motorcycles and lightweight motorcycle engines but filling orders for them from across the country. From the moment he started his own manufacturing outfit, tales of Curtiss’s inventive spirit became part of the lore of the town. One day, as one of these many stories goes, Curtiss idly twisted a rubber grip on the handlebar of a motorcycle while he was standing outside talking with a customer. Abruptly halting the conversation, Curtiss ran into the shop, beckoned a mechanic, and on the spur of the moment invented the handlebar throttle control—a design that would, of course, become a signature feature on almost all modern motorcycles.

  Within a few years, Curtiss transformed his modest bicycle shop into an impressive manufacturing operation, turning out a wide array of motorcycles, lightweight engines, and ultimately aircraft. By 1914, he reached a wholly new phase of prominence. The Curtiss Aeroplane Company not only had two large plants and more than one hundred workers; it occupied a place of international stature in the emerging aviation industry.

  Nonetheless, as Curtiss biographer C. R. Roseberry notes, Curtiss always referred to his operation as “the shop.” The word “factory” was simply not his vocabulary. For Curtiss, his shop was a place in which workers collaborated, openly exchanging ideas for modifications and improvements. It was also a place where Curtiss could always dirty his hands alongside his employees to try out new ideas whenever he felt so inclined.

  To help to ensure his vision of a vibrant, creative workplace, Curtiss surrounded himself with both close childhood friends and exceptionally skilled mechanics. Plant manager Harry Genung had been one of Curtiss’s best friends since grade school. Genung was affable, organized, and unfailingly loyal to Curtiss in a relationship that extended far beyond the confines of the rapidly expanding business. For years, Genung and his wife, Martha—who also worked at the “shop”—even lived in the back of the same big house where Curtiss resided with his wife Lena.

  Meanwhile, Henry Kleckler, Curtiss’s shop foreman, earned a near-legendary status among early airplane designers for his natural engineering gifts. As one account puts it, his coworkers used to say that Kleckler, a thickset man of Dutch descent with little formal education, could make a motor out of a piece of baling wire. They would call for him whenever they were stumped by a difficult piece of work. Kleckler would arrive grinning, listen intently to what was required, and invariably say, “I fix him.” No matter how big his company grew, Curtiss maintained: “I’d rather have Henry Kleckler on a project than six engineers.”

  Like many of the employees, Kleckler and Genung had joined up with Curtiss early in the company’s phenomenal period of growth. In 1909, when A. P. Warner—the first private individual to buy an airplane in America—came to the plant to make the sale, he remembers Curtiss’s operation as “little more than a shed with a few tools in it.” As the company rapidly expanded over the next five years, Genung and Kleckler were indispensable to Curtiss. When Curtiss got swept up in a new idea, he needed Genung to manage an often overwhelming volume of existing business. And to bring his new ideas to fruition, Curtiss invariably relied on Kleckler to work out the knottiest engineering details.

  But the two men were surprisingly representative of the devoted and genial workforce that Curtiss had assembled by 1914. Of all the many employees who worked for him over the years, few felt differently than Lewis Longwell, who joined the company in 1911. As Longwell puts it simply, “Curtiss was a good and honest man to work for.” A key secret to the company’s success, another Curtiss collaborator, Theodore “Spuds” Ellyson explains, was that Curtiss never set himself apart as a genius inventor. Rather he was “a comrade and chum, who made us feel that we were all working together, and that our ideas and advice were really of some value.”

  Examining each piece of the Langley aerodrome carefully as it is uncrated, Curtiss and Kleckler personally supervise as workers carry the pieces into a newly created work area off the courtyard at the Curtiss plant. The outdoor space between the plant’s office building and the airplane assembly room has recently been walled in and roofed over and it will serve as the staging area for the months of work it will take to restore the aircraft.

  It is an indication of the stature of the aerodrome restoration project that Curtiss has put Kleckler in charge. But, uncharacteristically, Kleckler is worried and, as the two quietly discuss the job, he doesn’t hesitate to say so. Chief among Kleckler’s concerns is that no expense was spared in the aerodrome’s original construction and he doesn’t know how he and his workers will be able to match it without spending a fortune far beyond the limited budget the Smithsonian has proposed for the job.

  Curtiss, as always, is optimistic. They can make the wings’ ribs out of solid spruce, he assures Kleckler. The spruce will be heavier than the fine, hollowed-out hardwood, but the pieces will be much cheaper and easier to construct. And the same kind of corners can be cut on the plane’s skin, he says. Silk would be lighter, but it is just too expensive; they will have to make do with the canvas the shop already has on hand.

  As Curtiss explains, Professor Albert Zahm from the Smithsonian will be arriving soon to oversee the work and make sure it follows Langley’s original specifications. They can let him and Smithsonian Secretary Charles Walcott weigh in on those kinds of issues. But, he adds, it is unlikely that they or anyone will be concerned by simple substitutions for cheaper and heavier materials. The key is simply to alter the plane’s design and aerodynamic properties as little as possible.

  Inside the new staging area, the workers hang the main piece of the aerodrome’s fuselage from the roof rafters to inspect it more closely. Despite the damage, the aerodrome’s steel frame is still clearly recognizable. The workers can still visually trace the aerodrome’s general system of control: from the pilot’s seat under the plane’s backbone, the lever is still there to move the now-crumpled tail up and down, as is the one designed for steering right and left, although only a broken fragment of the vertical rudder now remains.

  Almost certainly, before he leaves the shop, Curtiss announces to the group his conviction that the aerodrome will fly. But, like everyone present, he knows that the proposition is highly uncertain, more of a wish than a real assessment. Hanging from its new perch, the hollow steel carcass of the aerodrome looks like it might be more at home in the Smithsonian’s collection of fossilized dinosaur skeletons.

  In the first weeks of work the biggest revelation for Kleckler and his team is the engine. Although it has been thoroughly waterlogged and subjected to more than a decade of neglect, there is no question about the sophistication of its design. Workers repeatedly marvel at its resemblance to t
he new aircraft engines the Curtiss plant builds. By 1914, the Curtiss Aeroplane Company, like most modern aircraft manufacturers, has shown a preference for radial designs, similar to the one pioneered by Manly, in which the engine’s five cylinders are arranged around a central hub like a bulbous five-pointed star. Manly’s means of cooling the engine was also ahead of its time, employing a water cooling system to help dissipate the intense heat generated by the engine.

  Before long, Charles Manly himself, Langley’s close assistant and chief mastermind behind the aerodrome engine, will make the pilgrimage to Hammondsport to lend a hand rebuilding the aerodrome. Manly has long since gone on to design and manufacture trucks with hydraulic controls, but he is understandably elated that the aerodrome will finally get another chance to prove itself airworthy. Like so many others, Manly has spoken often of retesting Langley’s machine. He brought up the issue in 1908 with the Smithsonian when he became one of the founders of the Aero Club of America. And he noted publicly in 1911, when Langley’s papers were posthumously published, that he hoped eventually to raise the funds to do the job himself.

 

‹ Prev