Book Read Free

Fiasco

Page 24

by Stanisław Lem


  As delicately as he could, he moved the micron dial back, and the shadowy image returned. He selected the sharpest SGs at the critical meridian and superimposed these until the contours of Quinta were lined up like a whole sheaf of X rays of the same object taken at high speed and composited. The "city" lay on the equator. The SGs had been made along the axis of Quinta's own magnetic poles, and along the tangent to the planet's crust. Therefore, if the building complex extended for thirty miles, the photographs cut through it obliquely—as if one were to X-ray from a suburb all the streets, squares, and houses between oneself and the opposite suburb. This yielded little. Looking upon a multitude of people from a height, one would see them in vertical foreshortening. But looking along the horizontal, one saw only the closest people, at the entrances to the streets. An X-rayed crowd would appear as a jumble of many skeletons. Granted, it was possible to distinguish the buildings from the pedestrians: since the buildings did not move, everything that remained in place over a thousand SGs could be filtered out. Vehicles could also be removed from the picture by a retouching process that erased anything that traveled faster than a man on foot. If one were dealing with a large terrestrial city, then houses, bridges, factories would vanish, along with cars and trains, leaving only the shadows of the pedestrians. But premises so strongly geo- and anthropocentric were of questionable value. Still, Kirsting hoped that he would be lucky.

  He came to the darkroom often at night and went over the rolls of pictures countless times on the chance that he might accidentally select and juxtapose the right SGs and perhaps see—albeit poorly, in a fuzzy outline—the skeletons of these beings. Were they hominoid? Or even vertebrates? Was it calcium, compounds of calcium, that supported their frames, as with the terrestrial vertebrates? Exobiology considered the man shape to be unlikely, but osteological similarity to the skeletons of Earth was possible, considering the mass of the planet and the composition of the atmosphere. Free oxygen suggested the presence of vegetation, but plants would not engage in space travel or the manufacture of rockets.

  Kirsting did not count on a hominoid bone structure, which was the outcome of intricate, interconnected paths in terrestrial evolution. But even bipedality and erect stature did not justify anthropomorphism. Thousands of prehistoric reptiles, after all, had walked on two legs. If one were to make SGs of a pack of running iguanodon fossils, at a great distance they would be indistinguishable from marathoners.

  The sensitivity of the apparatus went far beyond the wildest dreams of the fathers of spin-resonance imaging. He could detect an eggshell, from the calcium, at a distance of a hundred thousand kilometers.

  Sometimes it seemed to the scientist that he saw among the misty blotches microscopic threads brighter than the background, like a frozen Holbein dance of death photographed through a telescope. And that, if he increased the magnification a little, he would be able to see the skeletons in fact, and they would cease to be what his mind added to the trembling fibers, that were so indefinite and fleeting—like the canals seen by the ancient observers of Mars because they wanted so much to see them. When he stared too long at the groupings of weak, motionless sparks, his fatigued vision yielded to his will and then he could make out—almost—the milky dots of skulls and the hair-thin bones of spines and limbs. But when he blinked, his eyes burning from the strain, the illusion dissolved.

  Kirsting switched off the instrument and got up. Squeezing his eyes shut in the total darkness, he summoned up the barely seen image, and the tiny skeletal apparitions returned, phosphorescent against velvet-black. By feel he released the holders and drifted toward the small ruby light above the exit. Blinded by the brightness of the corridor after being so long in the darkroom, he pressed into the recess of the door, which was padded with thick foam, instead of proceeding directly to the elevator, and this saved him when he was hit, to the accompaniment of thunder, by the blow of gravity. The night glowlamps went out, and along the length of the corridor that wheeled with the ship the emergency lights flashed on. But, unconscious, he did not see this.

  Steergard did not turn in after the council, knowing that DEUS, no matter how many tactics it came up with, would saddle him with a choice—a choice that would amount to the alternative between incalculable risk and simple retreat. During the discussion he had maintained the pose of decisiveness, but now, alone, he felt helpless, more so that night than ever. It was growing harder for him to resist the temptation to commit the choice to chance. In one of the closets in the cabin he had—among his personal odds and ends—an old, heavy bronze coin with the profile of Caesar and, on the back, the Roman fasces. It was a memento from his father, a numismatist. Opening the closet, he still did not know if he would actually entrust the ship, the crew, the fate of the whole expedition to this, the largest coin in human history, although already he was saying to himself that the fasces would signify flight—for what else was retreat?—and the worn profile of the massive face, what might prove their doom. He overcame his hesitation, groped in the dim closet, and pulled out from one of the small compartments a flat coin-box. He opened it, turned the coin in his hand. Did he have the right…? It could not be tossed in weightlessness. He pressed the coin into a paper clip, switched on the electromagnet that was fastened beneath the desktop so that photographs or maps could be held in place with steel cubes. He pushed the piles of printouts and tapes to the sides and, like a boy (he had been a boy, once), set the coin spinning. It turned on the edge of the clip more and more slowly, describing small circles, then finally fell, pulled by the magnet, and showed tails. Retreat.

  To sit, he grabbed the arms of the swivel chair, and no sooner did his shirt touch-adhere to the back than, before he was aware of it, he felt the blow. Barely perceptible at first, it grew in strength until an enormous force swept the films, papers, steel cubes, and dark-bronze coin off the desk and shoved him into the chair. The gravity intensified. With failing eyes, because the blood was leaving them, he could still see the rapid flickering of the round wall-lamp, and hear, feel, how through the steel walls, beneath their padding, ran a deep groan from all the ship's joints; and how, over the racket of objects flying in every direction—equipment not bolted down, articles of clothing—could be heard the distant howl of the sirens, a howl that seemed to come not from horns but from the ship itself, struck in its 170,000-ton body. And as he listened to this wailing and continual thunder, blinded by the terrible weight that forced his leaden body deep into the chair, he felt—passing out—relief.

  Yes, relief, because retreat now no longer entered into play.

  His sight returned after about twenty seconds, though the gravimeter still pointed to the red.

  The Hermes had not suffered a direct hit—that was impossible. Whatever had rammed it, DEUS, always on watch, parried the attack. But the attack had been carried out so cunningly and quietly that DEUS, with no time to choose a moderate shield, resorted to the ultimate.

  A gravitational wall could not be breached by anything in this Universe except a singularity—so it saved the Hermes. But the power of so violent a riposte had to produce recoil. Like a cannon slapped back by the reaction upon firing, the entire ship, at the epicenter of the sidereal discharge, shook, though it received only a small fraction of the released energy. Steergard, not even attempting to rise because his body was still as if under a press, saw, eyes bulging, how the large indicator arrow fell, quivering, millimeter by millimeter, from the red section of the round dial. His muscles, strained to the utmost, now began to obey. The gravimeter dropped to the black 2. But the sirens kept howling in a monotone on all the decks.

  Pushing down with both arms, he got out of the chair with difficulty. When he stood, he had to support himself with his hands on the edge of the desk—the way a stooped monkey walked, he thought (a curious thought, at this moment). Among the tapes and maps thrown to the floor he saw his father's coin, which continued to show tails or retreat.

  He smiled, because that decision had now been trumped b
y a higher card. The gravimeter's white dial stood at 1 and was slowly dropping. He had to get to the control room, to see how his people were. But at the door he turned suddenly, went back, picked up the coin, and returned it to the closet. No one should learn about his moment of weakness. It was not weakness as far as game theory was concerned, because in the absence of minimax solutions there was no decision better than one purely random. He could therefore justify his action, at least to himself, but he did not care to. Halfway down the tunnel-corridor, weightlessness returned. He pushed the elevator button. The problem had been solved. Though he was not in favor of battle, he knew his people, and knew that not one of them, except for the Vatican delegate, would agree to running away.

  XI

  Show of Strength

  It was impossible to learn the methods employed in the attack; whatever they had been, all trace of them was gone from the continuum. The printout from DEUS's memory showed the physicists what they had suspected. With omnidirectional sensors sweeping space around the Hermes to the outer perimeter of defense, radar echoes could be detected off particles a millimeter across within a radius of a hundred thousand miles. The blow was not radiant energy—that would have left a spectral line. The sudden appearance of about fifty objects with fuzzy edges around the Hermes, in a swarm converging rapidly on the ship, and all synchronized in motion, seemed inconceivable at first. They materialized at a very small distance, from one to two miles. The physicists, forced to speculate, pondered ways to penetrate the sensor shield undetected. They came up with three.

  Clouds of particles, each particle no larger than a bacterium, could coalesce to form multiton masses, which would imply no little skill in the production of self-fusing elements directed at a target in wide dispersion. It would be something like a cloud of microcrystals coming together—with a necessary delay, inside the perimeter—in an avalanche reaction.

  The individual particles, not merely condensing but interacting to form missiles, would have to possess a highly subtle structure. Nine seconds before the blow, the ship's magnetometers registered a jump in the magnetic field around the sides. It peaked at a billion gauss, then after several nanoseconds fell almost to zero. And yet beforehand there had been no electromagnetic activity whatever. The physicists were unable to propose a mechanism for the creation of a field of such strength, whose sources, with no prior appearance, could escape the notice of the sensors. Dipoles, theoretically, might penetrate the shield if a cloud of them neutralized itself through the mutual orientation of trillions of molecules.

  Such a reconstruction of the attack assumed a technology never before conceived and therefore never tested experimentally on Earth.

  The second possibility was a highly speculative method of using the quantum effects of space. According to this idea, no material particles had been smuggled past the defensive barrier, nor were there any in the whole spherical region surrounding it. Physical space contained a host of virtual particles that could materialize upon a shock-wave infusion of energy from without. This approach would require the ship to be surrounded, beyond the radius of the shield, by generators of the hardest band of ultraroentgen gamma rays, as well as a centripetal discharge that, in the shape of a spherical wave contracting at the speed of light, would produce—exactly upon its intersection with the defense—a tunnel effect: quanta of energy, emerging near the ship, would give rise to a sufficient quantity of hadrons in space for them to hurtle upon the Hermes from every direction. A possible method, but one demanding the most sophisticated instruments, precision positioning in space, as well as perfect camouflaging of orbiters. It seemed highly unlikely.

  The third way involved the use of negative energy outside the perimeter of defense, but this called for mastery of sidereal engineering—and sidereal engineering in its macroquantum form, with the preliminary siphoning of power from the Sun, because the power stations able to produce the necessary energy on the planet would betray their activity to the Hermes by the residual thermal buildup in the surrounding terrain.

  DEUS, taken completely unawares, seized its gravitational last resort. Calling on the full power of both main engines, it girdled the ship with gravity toroids. Inside these toroids, as in the center of intersecting automobile tires, sat the Hermes, and the missiles directed at it fell into Schwarzschild-curved space. Since any material object falling into such space lost all physical properties except electrical charge, angular momentum, and mass, becoming a formless part of the gravitational grave, no trace was left behind of the methods used in the attack.

  The toroids, serving as impenetrable armor, existed no more than twenty seconds, at a cost to the ship of 1021 joules. The Hermes did not share the fate of the Gabriel, did not annihilate itself in self-defense from the toroidal configuration of surging isogravs. But because they could not be focused sharply at the emitter, the ship absorbed about one-one-hundred-thousandth of the energy released. A few twenty-thousandths would have crushed the ship as a hammer crushes the shell of an empty, blown egg.

  The men came out of the emergency in one piece. With the exception of Steergard and Kirsting, all had been asleep or were at least buckled in their bunks like Tempe. The ship was not fitted for battle. Polassar suggested—whatever might happen—that they move to the perihelion, to replenish the power lost in repulsing the attack. Along the way, the Hermes passed through a cloud of rarefied gas. At first the gas was taken for a prominence dispelled in the solar wind, but the sensors reported that innumerable molecules had attached themselves to the armor and were corroding it catalytically. Specimens taken revealed the specificity of their action, much like that of the viroids already known. Steergard therefore did what in his conversation with the apostolic delegate he had called "coming out in the open." The Hermes swept the treacherous cloud with a series of thermal blasts, then destroyed the erosion viruses that adhered to the sides, by a simple expedient: with the refrigerating units on at full capacity, it turned like a roast on a spit as it passed through the top of a solar prominence that was mere light-seconds above the photosphere. Then the ship reduced speed to assume a stationary orbit, turned its stern toward Zeta, and opened its energy receptors. A portion of the tanked energy went to maintain the refrigeration; the rest was sucked up by the sidereals.

  At this point, the crew split into three groups.

  Harrach, Polassar, and Rotmont believed that the incident with the cloud represented a second attack by the Quintans.

  Kirsting and El Salam thought that it was not a blow directed at them intentionally but was, in a way, accidental—that the Hermes had entered a mined territory, mined long before their arrival.

  Nakamura occupied a middle position: the cloud was not a trap—a trap set either for the Hermes or for the Quintan orbiters—but was, rather, a "garbage dump" of microweapons employed in warfare above the planet and which had drifted, in the Sun's gravitational tide, to this perihelion, contrary to the intentions of the warring parties.

  Arago said nothing.

  DEUS was occupied with programming possible strategies for defensive, offensive, and conciliatory actions. It gave no preference: the data for the optimization of any of these lines were too meager.

  Gerbert considered that the thing to do was forget about contact and shows of strength, but he felt unqualified to participate in the debate, which grew more and more heated.

  Tempe, summoned by the captain when they had replaced the power lost, said that he was no SETI expert and did not command the ship.

  "No one here now is an expert, as I think you may have noticed," replied Steergard. "Myself included. Even so, everyone has his thoughts on the subject. You, too. It's only your opinion I want, not advice."

  "DEUS would have more to say," said the pilot, smiling.

  "DEUS will present twenty tactics, or a hundred. And that's all that it will do. You know as much as our experts, including DEUS. The minimum risk lies in retreat."

  "True enough." Tempe, sitting opposite the captain, continu
ed to smile.

  "What amuses you?" asked Steergard.

  "Are you asking privately, Captain, or is that an order?"

  "It's an order."

  "The situation is sticky, for sure. But I've gotten to know you well enough to know what you definitely will not do. We are not turning tail."

  "You're certain of that?"

  "Absolutely."

  "Why? Do you think that we were attacked once, or twice?"

  "It doesn't matter. Either way, they don't want contact. I have no idea what else they have up their sleeve."

  "Further attempts will be dangerous."

  "Obviously."

  "So?"

  "Well, I seem to like danger. If I didn't, I'd have been under a gravestone on Earth for a couple of hundred years now, because I would have died in bed surrounded by a grieving family."

  "In other words, you think that a show of strength is necessary."

  "Yes and no. It's a last resort that cannot be avoided."

  Held in place by a steel cube, a stack of printed pages lay on Steergard's desk, with a graph on the top page. The pilot recognized it. An hour before, he had received a copy from El Salam.

  "Have you read that?" Tempe asked.

  "No."

  "No?" He was surprised.

  "It's one more hypothesis from the physicists. I wanted to talk with you first."

  "You should read it. A hypothesis, yes. But I found it convincing."

 

‹ Prev