Book Read Free

Red Rover

Page 25

by Roger Wiens


  Mars Reconnaissance Orbiter

  analyses from, 179

  caliber of camera on, 199

  image captured by, (ins. img. 12), 210

  relying on images from, 179

  Mars Science Laboratory (MSL) additional funding needed for, 140, 147

  capsule for, 144–145, 144–145

  ChemCam cost review and, 140

  delayed launch of, 147, 148

  electrical motors for, 145–146, 148

  engineering model for, 112, 142

  instrument selections for, 108–110

  list of cutback options for, review of, 128–129

  motors for, temperature issue with, 127

  naming contest for, 148

  new landing technology developed for, 145

  parachute for, 144

  payload budget for, 110, 125–127

  payload selection for, 99–100

  proposals for, arrival of, 105

  radiation and, 117

  reviewing proposals for, 107

  RTG-powered, 117, 144, 145

  size issues affecting, addressing, 144–145

  as a successor to Mars Exploration Rovers, 98, 143

  versatility of, features intending for, 144

  See also Curiosity

  Mars Science Laboratory InterfaCE (MSLICE), 195

  Mars Scout program, 86, 89, 91

  Mars Society, 135

  Mars 3 mission, 10

  Mars time, adjusting to, 211, 213

  Martian rocks, 11

  Martin, James S., Jr., 29, 30, 31, 32, 93

  Mast motors, 145, 146, 155

  Mast unit, 75, 78, 98, 112, 113, 114, 122, 123, (ins. img. 15), 126, 138, 145, 160, 161, 162, 164, 194, 212, 214

  Mastcam

  as a sentry, 109

  as a set of imagers, 168

  view from, (ins. img. 14, 16), 212, 214

  Maurice, Sylvestre, 95, 96–98, 100–101, 108, 122, (ins. img. 7), 131, 162, 186, 187, 197, 206, 212

  Mawrth Valles site, 179, 180, 181, 183

  Max-Planck Institute for Chemistry, 171

  McKay, Christopher, 101

  McKeegan, Kevin, 63

  Mennonite Central Committee, 170

  Mercury, ideas for small missions to, 20

  Mercury program, 5, 187

  MERs. See Mars Exploration Rovers (MERs)

  Meslin, Pierre-Yves, 186

  Meteorites, 11, 62, 73, 86, 87, 88, 90, 174

  Meyer, Michael, 130

  Michael Army Airfield, 51, 53

  Micrometeroid effects, investigating, 36, 37

  Military lasers, 70, 71

  Military space efforts, 18, 20, 30, 46, 51

  Miller, Ed, 130, 156

  Milliken, Ralph, 173

  Mitrofanov, Igor, 170–171

  Mobile lab concept, 99, 107

  Model rockets, building, 5–6, 54–55

  Moon rocks, 11, 59, 62, 90

  Moon, the, 186

  Apollo capsules used for missions to, 144

  decade devoid of explorations to, 13

  first mission to, 6–7, 7–8

  first spacecraft to go past, and return, 45, 54

  ice discovery on, 171

  ideas for small missions to, 20

  last astronauts to walk on, 10

  magnetic tail extending past, 19

  module orbiting, 7–8

  next step for NASA after, 87

  positioning of, for launching missions, 41

  race to, 6

  reflector on, 72

  solar-wind samples from Apollo missions to, 17

  surface of, and lasers, 69

  See also specific Moon missions and spacecraft

  Mount Sharp, (ins. img. 14, 16)

  MSL. See Mars Science Laboratory (MSL)

  NASA Advisory Council, 133

  NASA TV, 41, 207

  National Academy of Sciences, 133

  National Aeronautics and Space Administration (NASA)

  administrative change in, 14–15

  call by, for instrument concepts for new Mars missions, 73–74

  contests held by, for mission concepts, 20–22, 85–86, 91

  controlling costs at, difficulty of, 128

  cost pressures facing, involving all missions, 127–128

  effect of a reduced budget on, 10, 13–14, 75, 88

  electrical leads forbidden by, 118

  fiber experts, 122

  flight project stages, 112

  investing more money into missions, 88

  live feed from, 204–205

  Los Alamos National Laboratory and, 34, 108

  major failures faced by, 13, 14

  new approach to missions at, 15, 16

  old approach to missions at, 15, 16

  Physics and Astrophysics divisions of, 19

  planetary protection office, 178, 179

  planning first orbiter to Mars, 9

  public-relations hit for, 51, 53

  race to the Moon and, 6

  relationship with foreign space agencies, 95, 96, 106

  restrictions on, 44

  review board of, for selecting the first Discovery mission, 29–31

  selections by, and the process leading to flight units and testing, 111–112

  small mission concepts presented to, 20–21

  Solar System Exploration division of, 93

  test rovers and, 74, 75, 76

  usual response of, to mission financial troubles, 125

  See also specific NASA centers, programs, missions, spacecraft, and personnel

  National Ignition Facility, 70

  National Public Radio (NPR), 93

  Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser, 72

  Neugebauer, Marcia, 18, 25

  Neutron spectrometers, 107, 109, 141, 170, 171

  New Mexico (Cerro Grande) fire, 79–83

  Newsom, Horton, 101

  Niemann, Hasso, 168

  Nilli Fossae valley, 179

  Nitrogen isotopes, 64

  Ocean Optics, Inc., 101, 120

  Odyssey, Mars satellite, 198, 204, 210

  Office of Solar System Exploration, 87

  Operational readiness tests (ORTs), 194–195, 196–199

  Operations lead, 195

  Oppenheimer, Robert, 33

  Opportunity, 89, 98, 143, 147, 169, 173, 209

  See also Mars Exploration Rovers (MERs)

  Optical demultiplexer (demux), 156, 157

  Optical fiber issues, 113–116, 120–121, 122, 126, 138

  Optical lens design, 156, 157–158

  Orion, 148

  Oxygen, 142, 175

  Oxygen isotopes, 62, 63, 64

  Paillet, Allexis, 162

  Pancam, 102

  Parachute deployment, failure in, 54, 55, 60

  Parachutes, 5, 30, 48, 49, 52, 56, 57, 59, 89, (ins. img. 12), 144, 145, 194, 203, 204, 207

  Parafoil, 52

  Pathfinder, Mars mission, 74, 88

  Pavri, Betina, 161

  Pepin, Robert, 11

  Percholate chemicals, 142

  Perez, René, 187, 205–206, 208

  Phobos, 189

  Phoenix Mars lander, 10, 94, 141–142, 145, 199

  Planetary Science Subcommittee (PSS), 133

  Planetary Society, 135

  Proposal phase, 112

  R Coronae Borealis, 9

  R Leonis, 9

  Radiation Assessment Detector (RAD), 212

  Radiation levels, 117

  Radiation monitor, 109, 171

  Radiation testing, 43, 45, 119

  Radio signal frequency, 203–204

  Radioisotope thermoelectric generator (RTG), 117, 144, 145, 154, 164, 178

  Raman spectroscopy, 106–107, 110, 169

  Reagan, Ronald, 70, 92

  Red Planet. See Mars

  Reentry capsules, 18, 19, 20, 23, 24, 47, 51, 52, 53

  Resonance ionization mass spectrometry (RIMS), 27, 71

  Retro-rocket
package, 145, 161–162, 164, 194, 209

  See also Entry, descent, and landing (EDL) stage

  Robotic missions

  effect of a reduced budget on, 13–14

  involving the Physics and Astrophysics divisions, 19

  shift to, 10

  small, push for, 15

  See also specific robotic missions, spacecraft, and probes

  Rocknest, 211

  Rover Development Team, 75

  Rover Environmental Monitoring Station (REMS), 212

  Rover Technology Group, 74

  Rovers

  ChemCam interfacing with, challenge of, 112–116

  communications with, 78

  expanding use of, 88

  field testing involving, 74, 75, 76, 77, 78–79, 80, 82, 83

  generator used for powering, 117, 144, 145

  ”shake and bake” tests for instruments on, 101, 140

  See also specific rovers and missions

  RTG. See Radioisotope thermoelectric generator (RTG)

  Rudert, Dan, 52–53

  Rummel, John, 178

  Russia

  collaborations with, 98, 109, 170–171

  Comet Halley and, 14

  mission by, to Mars’ moon, 189

  proposals from, for the mobile laboratory, 107

  See also Soviet Union, the

  Salt flats, 30, 52, 57, (ins. img. 2)

  Sample Analysis on Mars (SAM), 109, 169, 212

  Sample Arm and Sample Preparation and Handling system (SA-SPaH), 127, 128

  See also Arm, rover

  Sample Collection for Investigation of Mars (SCIM), 89, 90–92, 93, 94, 95, 98, (ins. img. 4), 141, 149, 185

  Sample-return missions, 17, 31, 35, 87–88, 89

  See also Solar-wind sample-return mission

  Sandia National Laboratories, 48

  Satellites, 19, 30, 46, 74, 96, 123, 173, 198, 199, 204, 210, 212

  Saturn, 14, 160, 168

  Saturn V, 6–7

  Scarecrow rover, (ins. img. 10)

  Schiaparelli, Giovanni, 8, 9

  Scientist-led approach, 15, 16

  Seven Minutes of Terror (video), 205

  “Shake and bake” tests, 101, 138, 140, 156, 163–164

  Sharma, Shiv, 107

  Silicon, 169, 174

  Silicon dioxide, 173

  Sirius, 148

  Sky Crane, (ins. img. 13), 145, 162, 194, 203, 204, 207, 208, 213

  Slow Motion Field Test, 172–176

  Smithsonian Museum, 183

  Snodgrass, Roger, 55

  Sojourner, Mars rover, 98, 171

  Solar system, formation of, 62, 63, 64

  Solar wind, described, 17, 24n

  Solar-wind concentrator design, 27, 35, 36, 63, (ins. img. 1)

  Solar-wind concentrator grids

  integration of, 39

  testing, 36, 37–38

  Solar-wind concentrator target, locating, following impact, 58

  Solar-wind detectors, acquiring and testing, 38–39

  Solar-wind monitors, 38, 39

  Solar-wind sample-return mission

  collectors for, deploying and stowing, 23–24, (ins. img. 1)

  complete proposal for, working on, 23–26

  concept proposal for, submitting, as a Discovery mission, 20–22

  cost to return samples in, 20

  earlier imperfect attempts at, 17

  idea of, pursuing, 16–17

  new plans for an independent, 18–20

  selection of, as a small mission concept winner, 21, 22

  See also Genesis

  Solar-wind test facility, 28

  Sounding-rocket sampling, 90

  Soviet Union, the

  collaborations with, 95–96

  Mars landings and, 191

  nuclear weapons and, 171

  space race and, 6, 10, 95

  See also Russia

  Space race, 6, 10, 95

  Space Shuttle program, 13, 188

  Space shuttles, 13, 45, 55, 89, 92, 93, 94, 183, 185, 188

  Spain, 109, 171

  Spare-part testing, 43

  Spectrometers, 70, 72–73, 101, 102, 106–107, 109, 110, 126, 137, 160, 169, 170, 171

  See also Laser-induced breakdown spectroscopy (LIBS)

  Spectroscopists, perspective of, 179, 180

  Spirit, 89, 98, 143, 147, 169, 176, 209, 214

  See also Mars Exploration Rovers (MERs)

  Sputnik, 5

  Squyres, Steve, 167, 177, 206–207

  Star observations, 9

  Star trackers, 43–44

  Star Wars missile defense system, 70

  Stardust, 27, 31, 32, 60, 86, 90

  Stern, Alan, 128, 131, 133, 140, 141, 147, 172

  Stiglich, Ralph, 135, 152–153

  Stolper, Ed, 172

  Suborbital flights, 89–90

  Sulfur, 64, 175, 176

  Sun, the

  centrifugal force of going around, 19

  composition of, studying, 4, 16–17, 18

  Earth and Mars orbiting, 8, 147

  elliptical orbit around, inner and outer point of, 201

  instrument used to collect oxygen and nitrogen from, (ins. img. 3)

  magnetic fields radiating out from, 17

  nitrogen of, 64

  oxygen of, 62, 63

  ratio of isotopes, 62, 63, 64, 87

  rising and setting on Mars, 214

  wind from, described, 17, 24n

  See also Solar-wind sample-return mission

  Swiss scientists, 17

  Syrtis Major, 9

  Telescope observations, 8, 9, 14, 94, 112–113

  Telescopes, lasers, and spectrometers. See Laser-induced breakdown spectroscopy (LIBS)

  Thermal spectroscopy, 106, 110

  Thermoelectric cooler (TEC), 155–156

  Thiemens, Mark, 90

  Titan, 168

  Titanium, 126, 127, 162

  United States, the

  collaborations with the Soviet Union, 95–96

  live events planned in, to watch Curiosity’s landing, 204–205

  Mars landings and, 191

  number of Mars landings by, 209

  space race and, 6, 10, 95

  University of California, Los Angeles (UCLA), 63, 64

  University of California, San Diego (UCSD), 90

  University of Hawaii, 107

  University of Minnesota School of Physics and Astronomy, 11

  University of New Mexico, 101

  Uplink leads, 196

  US Geological Survey, 101

  Utah Test and Training Range, 52

  Vaniman, Dave, 170

  Venus, 20, 149, 168

  Venus orbiter, 27

  Vertigo (company), 52

  Viking program, 10, 11, 13, 29, 101, 142, 145, 206

  Visible and Infrared Mineralogical Mapping Spectrometer (OMEGA), 179, 180

  Vulcanologists, 214

  Wang, Alian, 107

  War of the Worlds (radio broadcast), 70

  Washington University, St. Louis, 107

  Water, detection of, 98–99, 109, 141, 142, 171, 178, 212, 214

  Weather station, 109, 171

  Weiler, Ed, 182

  Welles, Orson, 70

  Wheel motors, 145, 146

  Wheels, 75, (ins. img. 10), 145, 162, 194, 204, 208, 214

  Whitaker, Rob, 102

  Wiens, Roger, 42, (ins. img. 3, 6, 9)

  X-ray diffractometer (XRD), 107, 109, 110, 133, 169, 170

  Z Ursa Majoris, 9

 

 

 
ttons">share



‹ Prev