Book Read Free

Biocentrism: How Life and Consciousness Are the Keys to Understanding the True Nature of the Universe

Page 18

by Robert Lanza


  Our current scientific worldview offers no escape for those afraid of death. But why are you here now, perched seemingly by chance on the cutting edge of all infinity? The answer is simple—the door is never closed! The mathematical possibility of your consciousness ending is zero.

  Logical, everyday experience puts us in a milieu where defined objects come and go, and everything has a natal moment. Whether pencil or kitten, we see items entering the world and others dissolving or vanishing. Logic is a fabric woven of such beginnings and endings. Conversely, those entities that are timeless by nature, such as love, beauty, consciousness, or the universe as a whole, have always dwelt outside the cold grasp of limitation. So the Great Everything, which we now know to be synonymous with consciousness, could hardly fit within the ephemeral category. Instinct joins with what science we can employ here, to affirm that it is so, even if no argument, alas, can demonstrate immortality to everyone’s satisfaction.

  Our inability to remember infinite time is meaningless because memory is a particularly limited and selective circuit within the neural network. Nor by definition could we recall a time of nothingness: no help there either.

  Eternity is a fascinating concept, one that doesn’t indicate a perpetual existence in time without end. Eternity doesn’t mean a limitless temporal sequence. Rather, it resides outside of time altogether. The Eastern religions have of course argued for millennia that birth and death are equally illusory. (Or at least, their core teachings have done so. For the masses in every religion, there are more peripheral notions; in Eastern sects these include reincarnation.) Because consciousness transcends the body, because internal and external are fundamentally distinctions of language and practicality alone, we’re left with Being or consciousness as the bedrock components of existence.

  The problem many face when pondering such things is not just that language is dualistic by nature and therefore poorly suited for such inquiries, but that there are onion layers of “truth” depending on the level of understanding. Science, philosophy, religion, and metaphysics all deal with the challenges of addressing a wide audience with a huge spectrum of comprehension, education, inclination, and bias.

  When a skilled science speaker steps up to a lectern, he already knows who his particular audience is for that day. A physicist giving a popular lecture, especially to youngsters, will avoid all equations, lest the audience’s eyes start to glaze. Terms such as electron will need to be briefly defined. If, on the other hand, the audience has a good science background—let’s say it’s a talk for secondary school science teachers—then statements like “electrons orbit an atom’s nucleus” and “Jupiter revolves around the sun” involve already-familiar terms, and no one would be left behind. Yet if the audience is even more sophisticated, composed of physicists and astronomers, both statements would now be false. An electron doesn’t really orbit; it shimmers at a likely distance from the center in a state of probability alone, its position and motion undefined until an observer forces its wave-function to collapse. And Jupiter orbits not the sun but the barycenter, the vacant point in space outside the sun’s surface where the two bodies’ gravities balance like a seesaw. What is correct in one context is wrong in another.

  The same holds for science, philosophy, metaphysics, and cosmology. When a person strictly identifies his only existence with his body and is certain the universe is a separate, random, external entity, then saying “Death isn’t real” is not only ludicrous, it’s untrue. His body’s cells will all indeed die. His false and limited sense of being an isolated organism—this will end, too. Claims of an afterlife will be met with an appropriately justifiable skepticism: “What has an afterlife, my rotting corpse? How?”

  The next level upward has our individual feeling himself to be a living entity, a spirit perhaps, ensconced in a body; if he’s had spiritual experiences or else religious or philosophical beliefs of an immortal soul being part and parcel of his essence, then now it makes more sense for him to accept that something goes on even after the body is gone, and he’ll not waver in this view even as his atheistic friends deride him for wishful thinking.

  The concept of death has always meant one thing only: an end that has no reprieve or ambiguity. It can only happen to something that has been born or created, something whose nature is bounded and finite. That fine wine glass you inherited from your grandmother can have a death when it falls and shatters into a dozen fragments; it’s gone for keeps. Individual bodies also have natal moments, their cells destined to age and self-destruct after about ninety generations, even if not acted upon by outside forces. Stars die too, albeit after enjoying lifespans usually numbered in the billions of years.

  Now comes the biggie, the oldest question of all. Who am I? If I am only my body, then I must die. If I am my consciousness, the sense of experience and sensations, then I cannot die for the simple reason that consciousness may be expressed in manifold fashion sequentially, but it is ultimately unconfined. Or if one prefers to pin things down, the “alive” feeling, the sensation of “me” is, so far as science can tell, a sprightly neuro-electrical fountain operating with about 100 watts of energy, the same as a bright light bulb. We even emit the same heat as a bulb, too, which is why a car rapidly gets warmer, even during a cold night, especially when a driver is accompanied by a passenger or two.

  Now the truly skeptical might argue that this internal energy merely “goes away” at death and vanishes. But one of the surest axioms of science is that energy can never die, ever. Energy is known with scientific certainty to be deathless; it can neither be created nor destroyed. It merely changes form. Because absolutely everything has an energy-identity, nothing is exempt from this immortality. Staying with the car analogy a bit longer, say you drive up a hill. The gasoline’s energy, stored in its chemical bonds, is released to power the vehicle and let it fight gravity. As it ascends, it uses fuel but gains potential energy. This means that the fight with gravity has yielded a stored form of energy, a coupon that never expires even after a billion years. The car can cash in this coupon of potential energy at any time, so let’s do it now, by letting the automobile coast down with the engine off. As it does so, it gains speed, which is kinetic energy, the energy of motion. It is using up its gravitational potential energy as it loses altitude but gains kinetic energy. You step on the brakes, which get hot, which is another way of saying its atoms are speeding up—more kinetic energy. Hybrid cars use this braking energy to charge their batteries. In short, energy keeps changing forms, but it never diminishes in the least. Similarly, the essence of who you are, which is energy, can neither diminish nor “go away”—there simply isn’t any “away” in which to go. We inhabit a closed system.

  The implications of this recently hit home with the death of my sister Christine. I was text messaging with an Associated Press reporter as one of the biggest frauds in scientific history started to unfold.

  Sat 12/10/05 1:40 PM From Reporter: Bob: it’s all very fishy. The edges of Hwang’s cloning paper are falling away and there’s a growing feeling that the center can’t hold either. I simply don’t know what to make of Hwang’s hospitalization . . . overly dramatic or the weight of a fraud soon to be exposed weighing heavily? . . . how is this thing gonna bottom out?

  Sat 12/10/05 4:24 PM From Robert Lanza: Life is nuts! My sister was just in an auto accident, and has been rushed into surgery with major internal bleeding. I just spoke with one of the doctors—they don’t think there’s much chance she’s going to make it. All this seems so distant and absurd right now. I’m off to the hospital. Bob

  Sat 12/10/05 5:40 PM From Reporter: My God, Bob.

  But my sister didn’t make it. After viewing Christine’s body, I went out to speak with several of the family members who had assembled at the hospital. As I entered the room, Christine’s husband—Ed—started to sob uncontrollably. For a few moments I felt like I was transcending the provincialism of time. I had one foot in the present surrounded by tears, and one foot
back in the glory of nature, turning my face toward the radiance of the Sun. Again, as during the aftermath of Dennis’s accident, I thought about the little episode with the glowworm, and how every creature consists of multiple spheres of physical reality that pass through space and time like ghosts through doors. I thought too about the two-slit experiment, with the electron going through both holes at the same time. I could not doubt the conclusions of these experiments: Christine was both alive and dead, outside of time, yet here in my reality I would have to deal with this outcome and no other.

  Christine had had a hard life. She had finally found a man who she loved very much. My younger sister couldn’t make it to her wedding because she had a card game that had been scheduled for several weeks. My mother also couldn’t make the wedding due to an important engagement she had at the Elks Club. The wedding was one of the most important days in Christine’s life. Because no one from our side of the family showed up except for me, Christine asked me to walk her down the aisle to give her away.

  Soon after the wedding, Christine and Ed were driving to the dream house they had just bought when their car hit a patch of black ice. She was thrown from the car and landed in a bank of snow.

  “Ed,” she had said, “I can’t feel my leg.”

  She never knew that her liver had been ripped in half and blood was rushing into her peritoneum.

  Soon after the death of his son, Emerson wrote, “Our life is not so much threatened as our perception. I grieve that grief can teach me nothing, nor carry me one step into real nature.” By striving to see through the veil of our ordinary perceptions, we can come closer to understanding our profound relationship to all created things—all possibilities and potentialities—past and present, great and small.

  Christine had recently lost more than a hundred pounds, and Ed had bought her a pair of diamond earrings as a surprise. It’s going to be hard to wait—I have to admit—but I know Christine is going to look fabulous in them the next time I see her . . . in whatever form she and I and this amazing play of consciousness assume.

  20

  WHERE DO WE GO FROM HERE?

  Biocentrism is a scientific change in worldview that invites incorporation into existing areas of research. It offers short-term and longer-term opportunities, both to demonstrate biocentrism’s own truth, and to use it as a springboard to make sense of aspects of biological and physical science that are currently insensible.

  The most immediate evidence of biocentrism will arrive with the never-ending creation of new and cleverer quantum theory experiments, as they expand into the macrocosmic. Already, QT experiments have intruded into the visible, as we have described in an earlier chapter. As such demonstrations increasingly grow into the macroscopic realm, it will be untenable to “look the other way” when it comes to observer-influenced outcomes. In short, QT will, on its own, require an explanation for its strange results—and the most logical will be biocentrism.

  In 2008, in an article in the journal Progress in Physics, Elmira A. Isaeva said, “The problem of quantum physics, as a choice of one alternative at quantum measurement and a problem of philosophy as to how consciousness functions, is deeply connected with relations between these two. It is quite possible that in solving these two problems, it is likely that experiments in the quantum mechanics will include workings of a brain and consciousness, and it will then be possible to present a new basis for the theory of consciousness.” This—in a physics journal!

  The article then goes on to discuss the “dependence of physical experiment on the state of consciousness.” Such mainstream acknowledgments of the role of consciousness and the living in previously assumed to be physics-alone areas will continue to multiply until they become the established paradigm rather than a bothersome offshoot.

  Toward this end, the proposed scaled-up superposition experiment will see whether the weird quantum effects observed at the molecular, atomic, and subatomic levels apply just as strongly in truly large macroscopic structures—at the levels of tables and chairs. It would be interesting to confirm or deny that macroscopic objects literally exist in more than one state or place simultaneously until perturbed in some way, after which they collapse out of “superposition“ to just one outcome. There are many reasons why this might not happen experimentally, chief among them the noise (interference from light, organisms, etc.), but whatever outcome occurs, it should be revelatory.

  The second, allied area of biocentric research is of course in the realm of brain architecture, neuroscience, and specifically consciousness itself. Here, the authors are hopeful but not optimistic about short-term progress, for the reasons outlined in chapter 19.

  A third area is the ongoing research into artificial intelligence, which is still in its infancy. Few doubt, however, that this century, in which computer power and capabilities keep expanding geometrically, will eventually bring researchers to confront the problem in a serious, practical, useful way. When that happens, it will become clear that a “thinking device” will need the same kind of algorithms for employing time and developing a sense of space that we enjoy. The development of such sophisticated circuitry will reveal— probably faster than human brain research can—the realities and modalities of time and space as being entirely observer-dependent.

  It will also be interesting to keep an eye on the ongoing experiments into free will. Biocentrism neither demands there be individual free will, nor rejects it—though the former seems more compatible with an over-arching, consciousness-based universe. In 2008, experiments by Benjamin Liber and others, building on their earlier work alluded to previously, demonstrated that the brain, operating on its own, makes which-hand-to-raise choices that are detectible by observers watching brain-scan monitors up to ten seconds before the subject has “decided” which arm to hold up.

  Finally, one must consider the endless ongoing attempts at creating GUTs—grand unified theories. Currently, such efforts in physics have been maddeningly lengthy—stretching typically for decades—without much success except as a way of financially facilitating the careers of theoreticians and grad students. Nor have they even “felt right.” Incorporating the living universe, or consciousness, or allowing the observer into the equation, as John Wheeler insists is necessary, would at minimum produce a fascinating amalgam of the living and non-living in a way that might make everything work better.

  Currently, the disciplines of biology, physics, cosmology, and all their sub-branches are generally practiced by those with little knowledge of the others. It may take a multidisciplinary approach to achieve tangible results that incorporate biocentrism. The authors are optimistic that this will happen in time.

  And what, after all, is time?

  ACKNOWLEDGMENTS

  The authors would like to thank the publisher, Glenn Yeffeth, and Nana Naisbitt, Robert Faggen, and Joe Pappalardo for their valuable assistance with the book. We would also like to thank Alan McKnight for the illustrations and Ben Mathiesen for his help with the material in the appendix. And, of course, the book wouldn’t be possible without the help of our agent, Al Zuckerman.

  Various portions of the material in this book appeared separately in the New Scientist, the American Scholar, the Humanist, Perspectives in Biology and Medicine, Yankee magazine, Capper’s, Grit, the World & I, Pacific Discovery, and in several literary magazines, including the Cimarron Review, the Ohio Review, the Antigonish Review, the Texas Review, and High Plains Literary Review.

  APPENDIX 1

  THE LORENTZ TRANSFORMATION

  One of the most famous formulas in science came from the dazzling mind of Hendrik Lorentz, near the end of the nineteenth century. It forms the backbone of relativity, and shows us the fickle nature of space, distance, and time. It may seem complicated, but it is not: ΔT = t√1-v2/c2

  We’ve expressed this for computing the change in the perceived passage of time. It is actually much simpler than it appears. Delta or Δ means change so ΔT is the change in your passage of time—wha
t you yourself perceive. Small t represents the time passing for those you left behind on Earth, let’s say one year—so what we’re after is how much time passes for you (T) while one year elapses for everyone back in Brooklyn. This simple “one year” of t (in this example) should be multiplied by the meat-and-potatoes of the Lorentz transformation, which is the square root of 1, from which we subtract the following fraction: v2, which is your speed multiplied by itself, divided by c2, which is the speed of light multiplied by itself. If all speeds are expressed in matching units, this equation will tell you how your time slows down.

  Here’s an example: If you travel twice the speed of a bullet, or one mile a second, then v2 is 1 × 1 or 1, which is divided by the speed of light (186,282 miles per second) times itself, yielding 35,000,000,000 and yielding a fraction so small it’s essentially nothing at all. When this nothingness is subtracted from the initial 1 in the equation, it’s still essentially 1 and because the square root of 1 is still 1, and remains 1 when multiplied by the one year that passed back on Earth, the answer naturally remains 1. That means that traveling at twice the speed of a bullet, or one mile a second, while it may seem fast, is actually too small to change the passage of time relativistically.

  Now consider a fast speed. If you’ve managed to travel at lightspeed, the fraction v2/c2 becomes 1/1 or 1. The expression inside the square root sign is then 1-1, which is 0. The square root of 0 is 0, so now you multiply 0 by the time experienced back on Earth, and the answer is 0. No time. Time has been frozen for you if you move at lightspeed. Thus, you can insert any number for “v” and the formula will yield how much time passes for a traveling astronaut while a given time passes on Earth. This same formula also calculates the decrease in length for a traveler, if one substitutes L (length) instead of V (speed). It will also work to compute mass increase the same way, except at the conclusion one must divide the result into 1 (find the reciprocal) because unlike time and length, which decreases, mass increases with greater velocity.

 

‹ Prev