Book Read Free

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

Page 27

by Michio Kaku


  Yet people back then did not become loafers, for several reasons. First, they would starve to death. People who did not do their share of the work were simply thrown out of the tribe, and they soon perished. Second, people became proud of their work, and even found meaning in their tasks. Third, there was enormous social pressure to remain a productive member of society. Productive individuals could marry to pass their genes onto the next generation, while the genes of loafers usually died with them.

  So why will people live productive lives when replicators are invented and everyone can have anything they want? First of all, replicators would guarantee that no one starves. But second, most people will probably still continue to work because they are proud of their skills and find meaning in their labor. But the third reason, social pressure, is harder to maintain without infringing on personal liberties. Instead of social pressure there would probably have to be a major shift in education to change people’s attitudes toward work and reward, so that the replicator is not abused.

  Fortunately, since progress will be slow and the replicator is a century or so away, society will have plenty of time to debate the merits and implications of this technology and adjust to this new reality so that society does not disintegrate.

  More than likely, the first replicators will be expensive. As MIT robotics expert Rodney Brooks says, “Nanotechnology will thrive, much as photolithography thrives—in very expensive, controlled situations rather than as a freestanding mass-market technology.” The problem of unlimited free goods will not be so much a problem. Given the sophistication of these machines, it may take many decades after they are first created to bring down the cost.

  I once had an interesting conversation with Jamais Cascio, a leading futurist with a long career of thoughtfully contemplating the outlines of tomorrow. First, he told me that he doubted the singularity theory mentioned in Chapter 2, observing that human nature and social dynamics are much too messy, complicated, and unpredictable to be fit into a simple neat theory. But he also admitted that remarkable advances in nanotechnology might eventually create a society in which there was an overabundance of goods, especially with replicators and robots. So I asked him: How will society behave when goods are nearly for free, when society is finally so rich that there is no necessity to work?

  Two things would happen, he said. First, he thought there would be enough wealth to guarantee a decent, minimum income for everyone, even if they did not work. So there probably would be a fraction of the population who become permanent slackers. He foresaw a permanent safety net for society. This might be undesirable, but it is unavoidable, especially if replicators and robots meet all our material needs. Second, this would be compensated for, he thought, by unleashing a revolution in the entrepreneurial spirit. Freed from the fear of plunging into poverty and ruin, the more industrious individuals would have more initiative and take on additional risks to create new industries and new opportunities for others. He foresaw a new renaissance of society, as the creative spirit was unleashed from the fear of bankruptcy.

  In my own field, physics, I see that most of us engage in physics not for the money but for the sheer joy of discovery and innovation. Often, we passed up lucrative jobs in other fields because we wanted to pursue a dream, not the dollar. The artists and intellectuals I know also feel the same way—that their goal is not to amass as big a bank account as possible but to be creative and ennoble the human spirit.

  Personally, if by 2100 society becomes so rich that we are surrounded by material wealth, I feel that society may react in a similar way. A fraction of the population will form a permanent class of people who simply refuse to work. Others may be liberated from the constraints of poverty and pursue creative scientific and artistic achievement. For them, the sheer joy of being creative, innovative, and artistic will outweigh the lure of a materialistic world. But the majority will continue to work and be useful simply because it is part of our genetic heritage, the Cave Man Principle within us.

  But there is one problem that even replicators cannot solve. And this is the problem of energy. All these miraculous technologies need vast amounts of energy to drive them. Where will this energy come from?

  The Stone Age did not end for lack of stone. And the Oil Age will end long before the world runs out of oil.

  —JAMES CANTON

  In my mind, (fusion) ranks with the original gift of fire, back in the mists of prehistory.

  —BEN BOVA

  The stars were the energy source of the gods. When Apollo rode across the sky in a chariot drawn by fire-breathing horses, he illuminated the heavens and the earth with the infinite power of the sun. His power was rivaled only by that of Zeus himself. Once, when Semele, one of Zeus’s numerous mortal lovers, begged to see him in his true form, he reluctantly obliged. The resulting burst of blinding, cosmic energy burned her to a crisp.

  In this century, we will harness the power of the stars, the energy source of the gods. In the short term, this means ushering in an era of solar/hydrogen power to replace fossil fuels. But in the long term, it means harnessing the power of fusion and even solar energy from outer space. Further advances in physics could usher in the age of magnetism, whereby cars, trains, and even skateboards will float through the air on a cushion of magnetism. Our energy consumption could be drastically reduced, since almost all the energy used in cars and trains is simply to overcome the friction of the road.

  END OF OIL?

  Today our planet is thoroughly wedded to fossil fuels in the form of oil, natural gas, and coal. Altogether, the world consumes about 14 trillion watts of power, of which 33 percent comes from oil, 25 percent from coal, 20 percent from gas, 7 percent from nuclear, 15 percent from biomass and hydroelectric, and a paltry .5 percent from solar and renewables.

  Without fossil fuels, the world economy would come to a grinding halt.

  One man who clearly saw the end of the age of oil was M. King Hubbert, a Shell Oil petroleum engineer. In 1956, Hubbert presented a far-reaching talk to the American Petroleum Institute, making a disturbing prediction that was universally derided by his colleagues at the time. He predicted that U.S. oil reserves were being depleted so rapidly that soon 50 percent of the oil would be taken out of the ground, triggering an irreversible era of decline that would set in between 1965 and 1971. He saw that the total amount of oil in the United States could be plotted as a bell-shaped curve, and that we were then near the top of that curve. From then on, things could only go downhill, he predicted. This meant that oil would become increasingly difficult to extract, hence the unthinkable would happen: the United States would begin importing oil.

  His prediction seemed rash, even outlandish and irresponsible, since the United States was still pumping an enormous amount of oil from Texas and elsewhere in this country. But oil engineers are not laughing anymore. Hubbert’s prediction was right on the button. By 1970, U.S. oil production peaked at 10.2 million barrels a day and then fell. It has never recovered. Today, the United States imports 59 percent of its oil. In fact, if you compare a graph of Hubbert’s estimates made decades ago with a graph of actual U.S. oil production through 2005, the two curves are almost identical.

  Now the fundamental question facing oil engineers is: Are we at the top of Hubbert’s peak in world oil reserves? Back in 1956, Hubbert also predicted that global oil production would peak in about fifty years. He could be right again. When our children look back at this era, will they view fossil fuels the same way we view whale oil today, as an unfortunate relic of the distant past?

  I have lectured many times in Saudi Arabia and throughout the Middle East, speaking about science, energy, and the future. On one hand, Saudi Arabia has 267 billion barrels of oil, so this country seems to be floating on a huge underground lake of crude oil. Traveling throughout Saudi Arabia and the Persian Gulf states, I could see an exorbitant waste of energy, with huge fountains gushing in the middle of the desert, creating mammoth artificial ponds and lakes. In Dubai, there is even
an indoor ski slope with thousands of tons of artificial snow, in utter defiance of the sweltering heat outside.

  But now the oil ministers are worried. Behind all the rhetoric of “proven oil reserves,” which are supposed to reassure us that we will have plenty of oil for decades to come, there is the realization that many of these authoritative oil figures are a deceptive form of make-believe. “Proven oil reserves” sounds soothingly authoritative and definitive, until you realize that the reserves are often the creation of a local oil minister’s wishful thinking and political pressure.

  Speaking to the experts in energy, I could see that a rough consensus is emerging: we are either at the top of Hubbert’s peak for world oil production, or are perhaps a decade away from that fateful point. This means that in the near future, we may be entering a period of irreversible decline.

  Of course, we will never totally run out of oil. New pockets are being found all the time. But the cost of extracting and refining these will gradually skyrocket. For example, Canada has huge tar sands deposits, enough to supply the world’s oil for decades to come, but it is not cost-effective to extract and refine it. The United States probably has enough coal reserves to last 300 years, but there are legal restrictions, and the cost of extracting all the particulate and gaseous pollutants is onerous.

  Furthermore, oil continues to be found in politically volatile regions of the world, contributing to foreign instability. Oil prices, when graphed over the decades, are like a roller-coaster ride, peaking at an astonishing $140 per barrel in 2008 (and more than $4 per gallon at the gas pump) and then plunging due to the great recession. Although there are wild swings, due to political unrest, speculation, rumors, etc., one thing is clear: the average price of oil will continue to rise over the long term.

  This will have profound implications for the world economy. The rapid rise of modern civilization in the twentieth century has been fueled by two things: cheap oil and Moore’s law. With energy prices rising, this puts pressure on the world’s food supply as well as on the control of pollution. As novelist Jerry Pournelle has said, “Food and pollution are not primary problems: they are energy problems. Given sufficient energy we can produce as much food as we like, if need be, by high-intensity means such as hydroponics and greenhouses. Pollution is similar: given enough energy, pollutants can be transformed into manageable products; if need be, disassembled into their constituent products.”

  We also face another issue: the rise of a middle class in China and India, one of the great demographic changes of the postwar era, which has created enormous pressure on oil and commodity prices. Seeing McDonald’s hamburgers and two-car garages in Hollywood movies, they also want to live the American dream of wasteful energy consumption.

  SOLAR/HYDROGEN ECONOMY

  In this regard, history seems to be repeating itself. Back in the 1900s, Henry Ford and Thomas Edison, two longtime friends, made a bet as to which form of energy could fuel the future. Henry Ford bet on oil replacing coal, with the internal combustion engine replacing steam engines. Thomas Edison bet on the electric car. It was a fateful bet, whose outcome would have a profound effect on world history. For a while, it appeared that Edison would win the bet, since whale oil was extremely hard to get. But the rapid discovery of cheap oil deposits in the Middle East and elsewhere soon had Ford emerging victorious. The world has never been the same since. Batteries could not keep up with the phenomenal success of gasoline. (Even today, pound for pound, gasoline contains roughly forty times more energy than a battery.)

  But now the tide is slowly turning. Perhaps Edison will win yet, a century after the bet was made.

  The question being asked in the halls of government and industry is: What will replace oil? There is no clear answer. In the near term, there is no immediate replacement for fossil fuels, and there most likely will be an energy mix, with no one form of energy dominating the others.

  But the most promising successor is solar/hydrogen power (based on renewable technologies like solar power, wind power, hydroelectric power, and hydrogen).

  At the present time, the cost of electricity produced from solar cells is several times the price of electricity produced from coal. But the cost of solar/hydrogen keeps plunging due to steady technological advances, while the cost of fossil fuels continues its slow rise. It is estimated that within ten to fifteen years or so, the two curves will cross. Then market forces will do the rest.

  WIND POWER

  In the short term, renewables like wind power are a big winner. Worldwide, generating capacity from wind grew from 17 billion watts in 2000 to 121 billion watts in 2008. Wind power, once considered a minor player, is becoming increasingly prominent. Recent advances in wind turbine technology have increased the efficiency and productivity of wind farms, which are one of the fastest-growing sectors of the energy market.

  The wind farms of today are a far cry from the old windmills that used to power farms and mills in the late 1800s. Nonpolluting and safe, a single wind power generator can produce 5 megawatts of power, enough for a small village. A wind turbine has huge, sleek blades, about 100 feet long, that turn with almost no friction. Wind turbines create electricity in the same way as hydroelectric dams and bicycle generators. The rotating motion spins a magnet inside a coil. The spinning magnetic field pushes electrons inside the coil, creating a net current of electricity. A large wind farm, consisting of 100 windmills, can produce 500 megawatts, comparable to the 1,000 megawatts produced by a single coal-burning or nuclear power plant.

  Over the past few decades, Europe has been the world’s leader in wind technology. But recently, the United States overtook Europe in generating electricity from wind. In 2009, the United States produced just 28 billion watts from wind power. But Texas alone produces 8 billion watts from wind power and has 1 billion watts in construction, and even more in development. If all goes as planned, Texas will generate 50 billion watts of electrical power from wind, more than enough to satisfy the state’s 24 million people.

  China will soon surpass the United States in wind power. Its Wind Base program will create six wind farms with a generating capacity of 127 billion watts.

  Although wind power looks increasingly attractive and will undoubtedly grow in the future, it cannot supply the bulk of energy for the world. At best, it will be an integral part of a larger energy mix. Wind power faces several problems. Wind power is generated only intermittently, when the wind blows, and only in a few key regions of the world. Also, because of losses in the transmission of electricity, wind farms have to be close to cities, which further limits their usefulness.

  HERE COMES THE SUN

  Ultimately, all energy comes from the sun. Even oil and coal are, in some sense, concentrated sunlight, representing the energy that fell on plants and animals millions of years ago. As a consequence, the amount of concentrated sunlight energy stored within a gallon of gasoline is much larger than the energy we can store in a battery. That was the fundamental problem facing Edison in the last century, and it is the same problem today.

  Solar cells operate by converting sunlight directly into electricity. (This process was explained by Einstein in 1905. When a particle of light, or a photon, hits a metal, it kicks out an electron, thereby creating a current.)

  Solar cells, however, are not efficient. Even after decades of hard work by engineers and scientists, solar cell efficiency hovers around 15 percent. So research has gone in two directions. The first is to increase the efficiency of solar cells, which is a very difficult technical problem. The other is to reduce the cost of the manufacture, installation, and construction of solar parks.

  For example, one might be able to supply the electrical needs of the United States by covering the entire state of Arizona with solar cells, which is impractical. However, land rights to large chunks of Saharan real estate have suddenly become a hot topic, and investors are already creating massive solar parks in this desert to meet the needs of European consumers.

  Or in cities
, one might be able to reduce the cost of solar power by covering homes and buildings with solar cells. This has several advantages, including eliminating the losses that occur during the transmission of power from a central power plant. The problem is one of reducing costs. A quick calculation shows that you would have to squeeze every possible dollar to make these ventures profitable.

  Although solar power still has not lived up to its promise, the recent instability in oil prices has spurred efforts to finally bring solar power to the marketplace. The tide could be turning. Records are being broken every few months. Solar voltaic production is growing by 45 percent per year, almost doubling every two years. Worldwide, photovoltaic installation is now 15 billion watts, growing by 5.6 billion watts in 2008 alone.

  In 2008, Florida Power & Light announced the largest solar plant project in the United States. The contract was given by SunPower, which plans to generate 25 megawatts of power. (The current record holder in the United States is the Nellis Air Force Base in Nevada, with a solar plant that generates 15 megawatts of solar power.)

  In 2009, BrightSource Energy, based in Oakland, California, announced plans to beat that record by building fourteen solar plants, generating 2.6 billion watts, across California, Nevada, and Arizona.

 

‹ Prev