Dark Matter and Cosmic Web Story

Home > Other > Dark Matter and Cosmic Web Story > Page 45
Dark Matter and Cosmic Web Story Page 45

by Einasto, Jaan


  Turner, M. S., Steigman, G., & Krauss, L. M. 1984, Flatness of the universe - Reconciling theoretical prejudices with observational data, Physical Review Letters, 52, 2090

  van de Hulst, H. C., Muller, C. A., & Oort, J. H. 1954, The spiral structure of the outer part of the Galactic System derived from the hydrogen emission at 21 cm wavelength, Bull. Astron. Inst. Netherlands, 12, 117

  van de Hulst, H. C., Raimond, E., & van Woerden, H. 1957, Rotation and density distribution of the Andromeda nebula derived from observations of the 21-cm line, Bull. Astron. Inst. Netherlands, 14, 1

  van de Weygaert, R. 2002, Froth across the Universe Dynamics and Stochastic Geometry of the Cosmic Foam, ArXiv:astro-ph/0206427

  van de Weygaert, R., Aragon-Calvo, M. A., Jones, B. J. T., & Platen, E. 2009, Geometry and Morphology of the Cosmic Web: Analyzing Spatial Patterns in the Universe, ArXiv:0912.3448

  van de Weygaert, R., Kreckel, K., Platen, E., et al. 2011, The Void Galaxy Survey, eds. I. Ferreras & A. Pasquali, 17

  van de Weygaert, R. & Platen, E. 2009, Cosmic Voids: structure, dynamics and galaxies, ArXiv:0912.2997

  van de Weygaert, R., Platen, E., Tigrak, E., et al. 2010, The Cosmically Depressed: Life, Sociology and Identity of Voids, in Astronomical Society of the Pacific Conference Series, Vol. 421, Galaxies in Isolation: Exploring Nature Versus Nurture, eds. L. Verdes-Montenegro, A. Del Olmo, & J. Sulentic, 99

  van de Weygaert, R. & van Kampen, E. 1993, Voids in Gravitational Instability Scenarios - Part One - Global Density and Velocity Fields in an Einstein - de-Sitter Universe, MNRAS, 263, 481

  van den Bergh, S. 1961, The stability of clusters of galaxies, AJ, 66, 566

  van den Bergh, S. 1962, The Stability of Clusters of Galaxies, Zeitschrift fur Astrophysik, 55, 21

  van den Bergh, S. 1972, A New Method for Estimating the Hubble Constant, A&A, 20, 469

  van den Bergh, S. 1973, The age of the universe, in Stellar Ages, 40

  van den Bergh, S. 1999, The Early History of Dark Matter, PASP, 111, 657

  van den Bergh, S. 2001, A Short History of the Missing Mass and Dark Energy Paradigms, in Astronomical Society of the Pacific Conference Series, Vol. 252, Historical Development of Modern Cosmology, eds. V. J. Martínez, V. Trimble, &M. J. Pons-Bordería, 75

  Vennik, J. 1984, A list of nearby groups of galaxies, Tartu Astr. Obs. Teated, 73, 1

  Vennik, J. & Kaasik, A. 1982, Radial velocities of galaxies in neighborhoods of groups of galaxies. I, Astrofizika, 18, 523

  Vennik, J., Kaasik, A., & Amirkhanian, A. 1982, Radial velocities of galaxies in neighborhoods of groups of galaxies. II, Astrofizika, 18, 533

  Vogeley, M. S., Geller, M. J., Park, C., & Huchra, J. P. 1994a, Voids and constraints on nonlinear clustering of galaxies, AJ, 108, 745

  Vogeley, M. S., Hoyle, F., Rojas, R. R., & Goldberg, D. M. 2004, Mapping the cosmic web with the Sloan Digital Sky Survey, in IAU Colloq. 195: Outskirts of Galaxy Clusters: Intense Life in the Suburbs, ed. A. Diaferio, 5

  Vogeley, M. S., Park, C., Geller, M. J., & Huchra, J. P. 1992, Large-scale clustering of galaxies in the CfA Redshift Survey, ApJ, 391, L5

  Vogeley, M. S., Park, C., Geller, M. J., Huchra, J. P., & Gott, III, J. R. 1994b, Topological analysis of the CfA redshift survey, ApJ, 420, 525

  Walter, F., Brinks, E., de Blok, W. J. G., et al. 2008, THINGS: The H I Nearby Galaxy Survey, AJ, 136, 2563

  Weniger, C. 2012, A tentative gamma-ray line from Dark Matter annihilation at the Fermi Large Area Telescope, J. Cosmology Astropart. Phys., 8, 7

  White, M., Blanton, M., Bolton, A., et al. 2011, The Clustering of Massive Galaxies at z 0.5 from the First Semester of BOSS Data, ApJ, 728, 126

  White, S. D. M. 1979, The hierarchy of correlation functions and its relation to other measures of galaxy clustering, MNRAS, 186, 145

  White, S. D. M. 2007, Fundamentalist physics: why Dark Energy is bad for astronomy, Reports on Progress in Physics, 70, 883

  White, S. D. M., Frenk, C. S., & Davis, M. 1983, Clustering in a neutrino-dominated universe, ApJ, 274, L1

  White, S. D. M., Frenk, C. S., Davis, M., & Efstathiou, G. 1987, Clusters, filaments, and voids in a universe dominated by cold dark matter, ApJ, 313, 505

  White, S. D. M. & Rees, M. J. 1978, Core condensation in heavy halos - A two-stage theory for galaxy formation and clustering, MNRAS, 183, 341

  Wirtz, C. 1922, Einiges zur Statistik der Radialbewegungen von Spiralnebeln und Kugelsternhaufen, Astronomische Nachrichten, 215, 349

  Wirtz, C. 1924, De Sitters Kosmologie und die Radialbewegungen der Spiralnebel, Astronomische Nachrichten, 222, 21

  Wolf, J., Martinez, G. D., Bullock, J. S., et al. 2010, Accurate masses for dispersion- supported galaxies, MNRAS, 406, 1220

  Wyse, A. B. & Mayall, N. U. 1942, Distribution of Mass in the Spiral Nebulae Messier 31 and Messier 33, ApJ, 95, 24 York, D. G., Adelman, J., Anderson, Jr., J. E., et al. 2000, The Sloan Digital Sky Survey: Technical Summary, AJ, 120, 1579

  Zeldovich, Y. B. 1970, Gravitational instability: An approximate theory for large density perturbations, A&A, 5, 84

  Zeldovich, Y. B. 1975, Deuterium of cosmological origin and the mean density of the universe, Soviet Astronomy Letters, 1, 5

  Zeldovich, Y. B. 1978, The theory of the large scale structure of the universe, in IAU Symposium, Vol. 79, Large Scale Structures in the Universe, eds. M. S. Longair & J. Einasto, 409

  Zeldovich, Y. B., Einasto, J., & Shandarin, S. F. 1982, Giant voids in the universe, Nature, 300, 407

  Zwicky, F. 1933, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta, 6, 110

  Zwicky, F. 1937, On the Masses of Nebulae and of Clusters of Nebulae, ApJ, 86, 217

  Zwicky, F., Herzog, E., & Wild, P. 1968, Catalogue of galaxies and of clusters of galaxies (Pasadena: California Institute of Technology (CIT), 1961–1968)

  Zwicky, F. & Zwicky, M. A. 1971, Catalogue of selected compact galaxies and of post-eruptive galaxies

  General Index

  1.5-m telescope, 72, 74

  (2-dimensional) distribution of galaxies, 9, 124, 137, 176, 195

  13th Marcel Grossmann Meeting, 173

  A194, 131

  A194 supercluster, 130

  A262, 131

  A2634, 132

  A2666, 132

  A347, 131

  A397, 132

  A400, 132

  A426, 131, 134

  Abastumani Observatory, 34, 95, 286

  Abell clusters, 122, 130–136, 188, 189, 200, 201, 203–204, 208–214, 224, 228, 230–232, 235–236, 240, 242, 272

  Academy of Sciences, 169

  acceleration of the Universe, 308

  alternatives to dark matter, 164

  Andromeda galaxy, see M31,

  annihilation of DM particles, 308

  apogalactic distances, 59, 60

  Apple II, 114

  Aquarius, 160

  Aquarius Project, 105

  Astronomical Council of the USSR Academy of Sciences, 38–40, 70, 71, 289

  Astronomical Institute of the Basel University, 96

  Astronomy Department of UCLA, 204, 290

  Astronomy Department of Yale University, 290

  astroparticle physics, 156

  August Coup, 23, 248, 249

  axions, 153, 157

  Baltic Barons, 18, 300

  Baltic Germans, 19, 20, 27

  baryonic dark matter, 147–151

  baryonic matter, 92, 101, 155

  Belorussia, 22

  Big Bang, 14, 70, 151–153

  Big Bang theory, 5

  Big Bang nucleosynthesis, 15, 96, 147, 151

  Big Crunch, 7

  black-body spectrum, 308

  Bootes void, 136

  bridges, 139

  bulges, 54, 62, 65

  “bullet” cluster 1E 0657–558, 165

  Byurakan Astrophysical Observatory, 70, 77, 140–142

  California Institue of Technology, 124

  catalogue of galaxies and c
lusters of galaxies, 8, 122

  catalogue of rich clusters of galaxies, 8

  Catalogue of Selected Compact Galaxies, 123

  Catholicos of All Armenians, 142

  Caucasus Winter Schools, 89, 120, 148, 152

  CDM model, 158

  cellular structure of the Universe, 107, 136

  Center of Excellence, 161, 301

  CERN, 161

  Chandra, 101

  circular velocity, 51, 53, 54, 58, 99

  classical cosmological paradigm, 14, 96, 308

  COBE, 154

  cold dark matter (CDM), 102, 157–159, 161, 308

  Cold War, 139, 310

  Coma cluster, 85, 120, 122, 126, 136

  Coma supercluster, 120, 128, 129, 138

  Commission 33, 59, 60, 81, 97

  Commodore VIC-20, 115

  conference on dark matter in Tallinn, 155, 307

  Congress of People’s Deputies, 167, 170, 171–173

  connection formulae, 54

  convection, 12

  core radius, 57

  corona, 83, 84, 306

  cosmic microwave background (CMB), 152, 155, 157

  CMB fluctuations, 305, 308

  CMB radiation, 153

  cosmic web, 138, 139

  Crimean Astrophysical Observatory, 77, 78

  critical cosmological density, 155, 164

  dark corona, 82, 89

  dark energy, 165

  dark matter, 46, 50, 83, 90–93, 95, 165

  distribution of, 101, 102

  local, 84, 306

  DEC VAX computer, 115

  declaration of sovereignty, 171

  density of matter, 8, 50, 54, 56, 57, 96

  description functions, 54, 56, 57, 68

  de Sitter universe, 5

  deuterium abundance, 157

  deuterium nucleosynthesis, 95

  discovery of pulsars, 305

  disks, 54, 62, 65

  dissolution of the USSR, 171, 172

  distance of the Sun from the Galactic centre, 53

  distribution of galaxies, 8, 124–127, 134–139, 176, 195, 203–206

  Division of Chemistry, Biology and Geology, 168

  DM annihilations, 162, 163

  double elliptical galaxies, 87

  dSph galaxies, 104

  Dutch, 98

  dwarf spheroidal galaxies, 159

  dynamical density, 47, 49

  Egeri, 24, 26, 145, 303–304

  Einasto index, 57

  Einasto profile, 57, 103, 104, 110, 114, 160

  Einstein X-ray orbiting observatory, 100

  Einstein–de Sitter model, 7

  elliptical galaxies, 65

  escape velocity, 53, 54

  ESTCube, 302

  Estonia, 19, 20, 173

  Estonian Academy of Sciences, 37, 116, 168–170, 289

  Estonian Biocenter, 28, 168

  Estonian Communist Party, 167

  Estonian Congress, 170

  Estonian flag, 166

  Estonian Greens Movement, 169

  Estonian IME program, 169

  Estonian Popular Front, 173

  Estonian Society of Prehistoric Art, 144

  Estonian Supreme Soviet, 170, 171

  European Astronomical Society, 96

  European Southern Observatory, 140, 180, 185, 228, 252, 293

  evolution models, 63

  evolution of galaxies, 63, 84, 107, 110

  expansion of the Universe, 15

  fall of the Berlin wall, 172

  Faza, 78

  Fermi Gamma-ray Space Telescope, 162

  Fermi satellite Large Area Telescope, 162, 308

  Fermilab, 161

  filaments of galaxies, 139, 224–227, 265

  filling factor of the Universe, 135

  fine structure of the Universe, 157, 271, 275–279

  Finland, 20

  Finnish TV, 166

  Finno-Ugric languages, 15

  First European Astronomy Meeting, 81, 86, 109

  flags, 166

  flat disk, 62

  fluctuations of the CMB, 153

  formation of galaxies, 106

  Fornax, 67

  galactic constants, 53, 58

  galactic coronas, 81

  galactic models, 51, 54, 81, 82

  galactic outer radius, 52

  Galaxies Intergalactic Medium Calculation (GIMIC), 108

  Galaxy, 47, 57, 67, 68, 87, 88, 98, 109, 148, 160

  galaxy formation, 106–108

  gamma rays, 162

  gamma-ray spectra, 163, 308

  gaseous coronae, 151

  generalised exponential model, 56

  German, 20, 21

  giant elliptical galaxies, 104

  glasnost, 23

  global dark matter, 84, 97, 306

  globular clusters, 63, 64, 66, 98, 104, 159

  gravitational lensing, 101, 282–283

  gravitational potential, 54, 59

  gravitinos, 157

  Great Northern War, 17, 20, 27, 37

  groups of galaxies, 88, 207–211

  clusters of galaxies, 85, 87, 90, 101

  guilds, 18

  halo, 54, 62, 65

  Hanseatic Days, 165

  Hanseatic League, 17

  harmonic mean radius, 57

  Harvard Center for Astrophysics, 8, 100, 162, 203–206

  Hercules superclusters, 120, 122, 126, 136

  Hertzsprung–Russell diagram, 10, 11

  HESS, 161

  hierarchical clustering scenario of structure formation, 9, 107, 120, 176–179, 185, 221, 258, 261, 265

  hot dark matter (HDM), 158, 159, 161

  Hubble constant, 7, 14, 96, 282–283, 308

  Hubble Space Telescope, 100, 105, 114, 280, 281, 283

  Hubble time, 6

  IAU General Assembly, 59, 82, 87, 97, 99, 114, 118, 123, 129, 159

  IAU Symposium on Dynamics of Stellar Systems, 99

  IAU Symposium on External Galaxies and Quasi-Stellar Objects, 109

  IAU Symposium on galaxies, 114

  IAU Symposium on the Spiral Structure of Galaxies, 109

  IBM Personal Computer, 115

  Ice Age, 16

  impact factor, 74

  Independence Day, 168

  initial mass function (IMF), 64

  Institute of Astronomy of Cambridge University, 115, 263, 264, 291

  Institute of Astrophysics and Atmospheric Physics, 116

  Institute of Chemical and Biological Physics, 161, 168

  Institute of Cybernetics, 113

  Institute of Physics, 116, 168

  Institute of Physics and Astronomy, 116

  International Astronomical Union (IAU), 58–60, 114, 118, 287–289

  International Geophysical Year 1957, 78

  Interregional Group of Deputies (IRGD), 173

  iPhone, 115

  Kaali lake, 16

  Kapteyn Astronomical Institute of Groningen University, 297

  Kapustin Yar, 77

  Katyn, 22

  Keplerian law, 99

  KGB, 30, 166, 168, 289

  Kosmos 215, 77

  Kuzmin constant, 48, 58

  ΛCDM model, 102, 103, 160, 262–265

  Large Area Telescope (LAT), 162

  Large Scale Structure of the Universe, 129, 136, 156

  Las Campanas Redshift Survey, 214

  Last Glacial Maximum refugia, 16

  Latvia, 20, 166, 173

  Leningrad University, 69

  Lick counts, 9, 137

  limiting radii, 60

  limiting velocity, 59, 60

  Lithuania, 20, 166, 173

  Livonia, 19

  Livonian Brothers, 27

  Local Group, 85, 88

  Local Supercluster, 128–130, 134

  low-density Universe, 96

  luminosity density field, 214–216, 223, 237, 266–268, 272

  luminosity function (LF), 64, 209, 210, 219–220, 222, 231–232

 
Lutheran reformation, 18

  M31, 4, 47, 51, 61–64, 66, 67, 70, 83, 85, 87, 88, 98, 101, 109, 148, 160

  nucleus of, 62

  M32, 63, 65, 67

  M33, 4

  M67, 62

  M7, 62

  M81, 94, 109

  M87, 65, 67, 82, 83, 94

  MacBook, 115

  MACHO, 101

  Magellanic Clouds, 101

  Magellanic Stream, 94

  Maidanak, 141

  Markarian galaxies, 123, 126

  mass distribution function, 60, 271–272

  mass paradox in clusters of galaxies, 15

  mass-to-luminosity ratio, 4, 61, 63, 65, 66, 68, 83, 84, 87, 88, 97–99, 104, 105, 110, 147–149, 159, 283

  massive coronae, 89

  matter density, 58

  Max-Planck-Institut für Physik, 162

  Max-Planck-Institut für Astrophysik, Garching, 264, 301

  maximum disk, 66, 110

  merging, 110

  metal content, 64

  metal-poor populations, 98

  Michurin-Lysenko type biology, 168

  microscopic structure, 156

  Mikron, 78

  Milky Way, 3, 45, 101

  Millennium simulation, 108

  Millennium-II simulations, 103

  Milne’s model, 5, 7

  missing satellite problem, 160

  model of the Galaxy, 52, 53, 67, 83

  models of stellar interiors, 12

  Modified Newtonian Dynamics (MOND), 164

  Molotov–Ribbentrop Pact, 20, 22, 172, 173

  morphological properties of companion galaxies, 94, 151

  Moscow University, 34

  N-body simulations, 102, 176–186, 192, 195, 197–199, 206, 215, 218, 226, 230, 232–233, 241, 242, 257, 259–265, 269–270, 273, 276

  N4169 group of galaxies, 120

  National Institute of Chemical Physics and Biophysics, 161

  National Optical Astronomy Observatory, 140

  National Radio Astronomy Observatory, 61, 98

  National Singing Festival, 25

  Nazi Germany, 22, 172

  near clusters, 120

  neutrino-dominated dark matter, 153, 154–155, 158, 159, 161

  neutrinos, 91, 154, 157

  New Year parties, 72

  Newtonian gravity, 164

  NFW profile, 102, 104, 110

  NGC 1835, 63

  NGC 188, 62

  NGC 2210, 63

  NGC 3115, 97, 147

  NGC 4472, 63

  NGC 6388, 63

  NGC 6791, 62

  NGC 6822, 4

  NGC 6946, 94

  noctilucent clouds, 78

  non-baryonic dark matter, 152, 154, 155

  Nordita, 115

  Nordic Optical Telescope, 143

 

‹ Prev