Turner, M. S., Steigman, G., & Krauss, L. M. 1984, Flatness of the universe - Reconciling theoretical prejudices with observational data, Physical Review Letters, 52, 2090
van de Hulst, H. C., Muller, C. A., & Oort, J. H. 1954, The spiral structure of the outer part of the Galactic System derived from the hydrogen emission at 21 cm wavelength, Bull. Astron. Inst. Netherlands, 12, 117
van de Hulst, H. C., Raimond, E., & van Woerden, H. 1957, Rotation and density distribution of the Andromeda nebula derived from observations of the 21-cm line, Bull. Astron. Inst. Netherlands, 14, 1
van de Weygaert, R. 2002, Froth across the Universe Dynamics and Stochastic Geometry of the Cosmic Foam, ArXiv:astro-ph/0206427
van de Weygaert, R., Aragon-Calvo, M. A., Jones, B. J. T., & Platen, E. 2009, Geometry and Morphology of the Cosmic Web: Analyzing Spatial Patterns in the Universe, ArXiv:0912.3448
van de Weygaert, R., Kreckel, K., Platen, E., et al. 2011, The Void Galaxy Survey, eds. I. Ferreras & A. Pasquali, 17
van de Weygaert, R. & Platen, E. 2009, Cosmic Voids: structure, dynamics and galaxies, ArXiv:0912.2997
van de Weygaert, R., Platen, E., Tigrak, E., et al. 2010, The Cosmically Depressed: Life, Sociology and Identity of Voids, in Astronomical Society of the Pacific Conference Series, Vol. 421, Galaxies in Isolation: Exploring Nature Versus Nurture, eds. L. Verdes-Montenegro, A. Del Olmo, & J. Sulentic, 99
van de Weygaert, R. & van Kampen, E. 1993, Voids in Gravitational Instability Scenarios - Part One - Global Density and Velocity Fields in an Einstein - de-Sitter Universe, MNRAS, 263, 481
van den Bergh, S. 1961, The stability of clusters of galaxies, AJ, 66, 566
van den Bergh, S. 1962, The Stability of Clusters of Galaxies, Zeitschrift fur Astrophysik, 55, 21
van den Bergh, S. 1972, A New Method for Estimating the Hubble Constant, A&A, 20, 469
van den Bergh, S. 1973, The age of the universe, in Stellar Ages, 40
van den Bergh, S. 1999, The Early History of Dark Matter, PASP, 111, 657
van den Bergh, S. 2001, A Short History of the Missing Mass and Dark Energy Paradigms, in Astronomical Society of the Pacific Conference Series, Vol. 252, Historical Development of Modern Cosmology, eds. V. J. Martínez, V. Trimble, &M. J. Pons-Bordería, 75
Vennik, J. 1984, A list of nearby groups of galaxies, Tartu Astr. Obs. Teated, 73, 1
Vennik, J. & Kaasik, A. 1982, Radial velocities of galaxies in neighborhoods of groups of galaxies. I, Astrofizika, 18, 523
Vennik, J., Kaasik, A., & Amirkhanian, A. 1982, Radial velocities of galaxies in neighborhoods of groups of galaxies. II, Astrofizika, 18, 533
Vogeley, M. S., Geller, M. J., Park, C., & Huchra, J. P. 1994a, Voids and constraints on nonlinear clustering of galaxies, AJ, 108, 745
Vogeley, M. S., Hoyle, F., Rojas, R. R., & Goldberg, D. M. 2004, Mapping the cosmic web with the Sloan Digital Sky Survey, in IAU Colloq. 195: Outskirts of Galaxy Clusters: Intense Life in the Suburbs, ed. A. Diaferio, 5
Vogeley, M. S., Park, C., Geller, M. J., & Huchra, J. P. 1992, Large-scale clustering of galaxies in the CfA Redshift Survey, ApJ, 391, L5
Vogeley, M. S., Park, C., Geller, M. J., Huchra, J. P., & Gott, III, J. R. 1994b, Topological analysis of the CfA redshift survey, ApJ, 420, 525
Walter, F., Brinks, E., de Blok, W. J. G., et al. 2008, THINGS: The H I Nearby Galaxy Survey, AJ, 136, 2563
Weniger, C. 2012, A tentative gamma-ray line from Dark Matter annihilation at the Fermi Large Area Telescope, J. Cosmology Astropart. Phys., 8, 7
White, M., Blanton, M., Bolton, A., et al. 2011, The Clustering of Massive Galaxies at z 0.5 from the First Semester of BOSS Data, ApJ, 728, 126
White, S. D. M. 1979, The hierarchy of correlation functions and its relation to other measures of galaxy clustering, MNRAS, 186, 145
White, S. D. M. 2007, Fundamentalist physics: why Dark Energy is bad for astronomy, Reports on Progress in Physics, 70, 883
White, S. D. M., Frenk, C. S., & Davis, M. 1983, Clustering in a neutrino-dominated universe, ApJ, 274, L1
White, S. D. M., Frenk, C. S., Davis, M., & Efstathiou, G. 1987, Clusters, filaments, and voids in a universe dominated by cold dark matter, ApJ, 313, 505
White, S. D. M. & Rees, M. J. 1978, Core condensation in heavy halos - A two-stage theory for galaxy formation and clustering, MNRAS, 183, 341
Wirtz, C. 1922, Einiges zur Statistik der Radialbewegungen von Spiralnebeln und Kugelsternhaufen, Astronomische Nachrichten, 215, 349
Wirtz, C. 1924, De Sitters Kosmologie und die Radialbewegungen der Spiralnebel, Astronomische Nachrichten, 222, 21
Wolf, J., Martinez, G. D., Bullock, J. S., et al. 2010, Accurate masses for dispersion- supported galaxies, MNRAS, 406, 1220
Wyse, A. B. & Mayall, N. U. 1942, Distribution of Mass in the Spiral Nebulae Messier 31 and Messier 33, ApJ, 95, 24 York, D. G., Adelman, J., Anderson, Jr., J. E., et al. 2000, The Sloan Digital Sky Survey: Technical Summary, AJ, 120, 1579
Zeldovich, Y. B. 1970, Gravitational instability: An approximate theory for large density perturbations, A&A, 5, 84
Zeldovich, Y. B. 1975, Deuterium of cosmological origin and the mean density of the universe, Soviet Astronomy Letters, 1, 5
Zeldovich, Y. B. 1978, The theory of the large scale structure of the universe, in IAU Symposium, Vol. 79, Large Scale Structures in the Universe, eds. M. S. Longair & J. Einasto, 409
Zeldovich, Y. B., Einasto, J., & Shandarin, S. F. 1982, Giant voids in the universe, Nature, 300, 407
Zwicky, F. 1933, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta, 6, 110
Zwicky, F. 1937, On the Masses of Nebulae and of Clusters of Nebulae, ApJ, 86, 217
Zwicky, F., Herzog, E., & Wild, P. 1968, Catalogue of galaxies and of clusters of galaxies (Pasadena: California Institute of Technology (CIT), 1961–1968)
Zwicky, F. & Zwicky, M. A. 1971, Catalogue of selected compact galaxies and of post-eruptive galaxies
General Index
1.5-m telescope, 72, 74
(2-dimensional) distribution of galaxies, 9, 124, 137, 176, 195
13th Marcel Grossmann Meeting, 173
A194, 131
A194 supercluster, 130
A262, 131
A2634, 132
A2666, 132
A347, 131
A397, 132
A400, 132
A426, 131, 134
Abastumani Observatory, 34, 95, 286
Abell clusters, 122, 130–136, 188, 189, 200, 201, 203–204, 208–214, 224, 228, 230–232, 235–236, 240, 242, 272
Academy of Sciences, 169
acceleration of the Universe, 308
alternatives to dark matter, 164
Andromeda galaxy, see M31,
annihilation of DM particles, 308
apogalactic distances, 59, 60
Apple II, 114
Aquarius, 160
Aquarius Project, 105
Astronomical Council of the USSR Academy of Sciences, 38–40, 70, 71, 289
Astronomical Institute of the Basel University, 96
Astronomy Department of UCLA, 204, 290
Astronomy Department of Yale University, 290
astroparticle physics, 156
August Coup, 23, 248, 249
axions, 153, 157
Baltic Barons, 18, 300
Baltic Germans, 19, 20, 27
baryonic dark matter, 147–151
baryonic matter, 92, 101, 155
Belorussia, 22
Big Bang, 14, 70, 151–153
Big Bang theory, 5
Big Bang nucleosynthesis, 15, 96, 147, 151
Big Crunch, 7
black-body spectrum, 308
Bootes void, 136
bridges, 139
bulges, 54, 62, 65
“bullet” cluster 1E 0657–558, 165
Byurakan Astrophysical Observatory, 70, 77, 140–142
California Institue of Technology, 124
catalogue of galaxies and c
lusters of galaxies, 8, 122
catalogue of rich clusters of galaxies, 8
Catalogue of Selected Compact Galaxies, 123
Catholicos of All Armenians, 142
Caucasus Winter Schools, 89, 120, 148, 152
CDM model, 158
cellular structure of the Universe, 107, 136
Center of Excellence, 161, 301
CERN, 161
Chandra, 101
circular velocity, 51, 53, 54, 58, 99
classical cosmological paradigm, 14, 96, 308
COBE, 154
cold dark matter (CDM), 102, 157–159, 161, 308
Cold War, 139, 310
Coma cluster, 85, 120, 122, 126, 136
Coma supercluster, 120, 128, 129, 138
Commission 33, 59, 60, 81, 97
Commodore VIC-20, 115
conference on dark matter in Tallinn, 155, 307
Congress of People’s Deputies, 167, 170, 171–173
connection formulae, 54
convection, 12
core radius, 57
corona, 83, 84, 306
cosmic microwave background (CMB), 152, 155, 157
CMB fluctuations, 305, 308
CMB radiation, 153
cosmic web, 138, 139
Crimean Astrophysical Observatory, 77, 78
critical cosmological density, 155, 164
dark corona, 82, 89
dark energy, 165
dark matter, 46, 50, 83, 90–93, 95, 165
distribution of, 101, 102
local, 84, 306
DEC VAX computer, 115
declaration of sovereignty, 171
density of matter, 8, 50, 54, 56, 57, 96
description functions, 54, 56, 57, 68
de Sitter universe, 5
deuterium abundance, 157
deuterium nucleosynthesis, 95
discovery of pulsars, 305
disks, 54, 62, 65
dissolution of the USSR, 171, 172
distance of the Sun from the Galactic centre, 53
distribution of galaxies, 8, 124–127, 134–139, 176, 195, 203–206
Division of Chemistry, Biology and Geology, 168
DM annihilations, 162, 163
double elliptical galaxies, 87
dSph galaxies, 104
Dutch, 98
dwarf spheroidal galaxies, 159
dynamical density, 47, 49
Egeri, 24, 26, 145, 303–304
Einasto index, 57
Einasto profile, 57, 103, 104, 110, 114, 160
Einstein X-ray orbiting observatory, 100
Einstein–de Sitter model, 7
elliptical galaxies, 65
escape velocity, 53, 54
ESTCube, 302
Estonia, 19, 20, 173
Estonian Academy of Sciences, 37, 116, 168–170, 289
Estonian Biocenter, 28, 168
Estonian Communist Party, 167
Estonian Congress, 170
Estonian flag, 166
Estonian Greens Movement, 169
Estonian IME program, 169
Estonian Popular Front, 173
Estonian Society of Prehistoric Art, 144
Estonian Supreme Soviet, 170, 171
European Astronomical Society, 96
European Southern Observatory, 140, 180, 185, 228, 252, 293
evolution models, 63
evolution of galaxies, 63, 84, 107, 110
expansion of the Universe, 15
fall of the Berlin wall, 172
Faza, 78
Fermi Gamma-ray Space Telescope, 162
Fermi satellite Large Area Telescope, 162, 308
Fermilab, 161
filaments of galaxies, 139, 224–227, 265
filling factor of the Universe, 135
fine structure of the Universe, 157, 271, 275–279
Finland, 20
Finnish TV, 166
Finno-Ugric languages, 15
First European Astronomy Meeting, 81, 86, 109
flags, 166
flat disk, 62
fluctuations of the CMB, 153
formation of galaxies, 106
Fornax, 67
galactic constants, 53, 58
galactic coronas, 81
galactic models, 51, 54, 81, 82
galactic outer radius, 52
Galaxies Intergalactic Medium Calculation (GIMIC), 108
Galaxy, 47, 57, 67, 68, 87, 88, 98, 109, 148, 160
galaxy formation, 106–108
gamma rays, 162
gamma-ray spectra, 163, 308
gaseous coronae, 151
generalised exponential model, 56
German, 20, 21
giant elliptical galaxies, 104
glasnost, 23
global dark matter, 84, 97, 306
globular clusters, 63, 64, 66, 98, 104, 159
gravitational lensing, 101, 282–283
gravitational potential, 54, 59
gravitinos, 157
Great Northern War, 17, 20, 27, 37
groups of galaxies, 88, 207–211
clusters of galaxies, 85, 87, 90, 101
guilds, 18
halo, 54, 62, 65
Hanseatic Days, 165
Hanseatic League, 17
harmonic mean radius, 57
Harvard Center for Astrophysics, 8, 100, 162, 203–206
Hercules superclusters, 120, 122, 126, 136
Hertzsprung–Russell diagram, 10, 11
HESS, 161
hierarchical clustering scenario of structure formation, 9, 107, 120, 176–179, 185, 221, 258, 261, 265
hot dark matter (HDM), 158, 159, 161
Hubble constant, 7, 14, 96, 282–283, 308
Hubble Space Telescope, 100, 105, 114, 280, 281, 283
Hubble time, 6
IAU General Assembly, 59, 82, 87, 97, 99, 114, 118, 123, 129, 159
IAU Symposium on Dynamics of Stellar Systems, 99
IAU Symposium on External Galaxies and Quasi-Stellar Objects, 109
IAU Symposium on galaxies, 114
IAU Symposium on the Spiral Structure of Galaxies, 109
IBM Personal Computer, 115
Ice Age, 16
impact factor, 74
Independence Day, 168
initial mass function (IMF), 64
Institute of Astronomy of Cambridge University, 115, 263, 264, 291
Institute of Astrophysics and Atmospheric Physics, 116
Institute of Chemical and Biological Physics, 161, 168
Institute of Cybernetics, 113
Institute of Physics, 116, 168
Institute of Physics and Astronomy, 116
International Astronomical Union (IAU), 58–60, 114, 118, 287–289
International Geophysical Year 1957, 78
Interregional Group of Deputies (IRGD), 173
iPhone, 115
Kaali lake, 16
Kapteyn Astronomical Institute of Groningen University, 297
Kapustin Yar, 77
Katyn, 22
Keplerian law, 99
KGB, 30, 166, 168, 289
Kosmos 215, 77
Kuzmin constant, 48, 58
ΛCDM model, 102, 103, 160, 262–265
Large Area Telescope (LAT), 162
Large Scale Structure of the Universe, 129, 136, 156
Las Campanas Redshift Survey, 214
Last Glacial Maximum refugia, 16
Latvia, 20, 166, 173
Leningrad University, 69
Lick counts, 9, 137
limiting radii, 60
limiting velocity, 59, 60
Lithuania, 20, 166, 173
Livonia, 19
Livonian Brothers, 27
Local Group, 85, 88
Local Supercluster, 128–130, 134
low-density Universe, 96
luminosity density field, 214–216, 223, 237, 266–268, 272
luminosity function (LF), 64, 209, 210, 219–220, 222, 231–232
Lutheran reformation, 18
M31, 4, 47, 51, 61–64, 66, 67, 70, 83, 85, 87, 88, 98, 101, 109, 148, 160
nucleus of, 62
M32, 63, 65, 67
M33, 4
M67, 62
M7, 62
M81, 94, 109
M87, 65, 67, 82, 83, 94
MacBook, 115
MACHO, 101
Magellanic Clouds, 101
Magellanic Stream, 94
Maidanak, 141
Markarian galaxies, 123, 126
mass distribution function, 60, 271–272
mass paradox in clusters of galaxies, 15
mass-to-luminosity ratio, 4, 61, 63, 65, 66, 68, 83, 84, 87, 88, 97–99, 104, 105, 110, 147–149, 159, 283
massive coronae, 89
matter density, 58
Max-Planck-Institut für Physik, 162
Max-Planck-Institut für Astrophysik, Garching, 264, 301
maximum disk, 66, 110
merging, 110
metal content, 64
metal-poor populations, 98
Michurin-Lysenko type biology, 168
microscopic structure, 156
Mikron, 78
Milky Way, 3, 45, 101
Millennium simulation, 108
Millennium-II simulations, 103
Milne’s model, 5, 7
missing satellite problem, 160
model of the Galaxy, 52, 53, 67, 83
models of stellar interiors, 12
Modified Newtonian Dynamics (MOND), 164
Molotov–Ribbentrop Pact, 20, 22, 172, 173
morphological properties of companion galaxies, 94, 151
Moscow University, 34
N-body simulations, 102, 176–186, 192, 195, 197–199, 206, 215, 218, 226, 230, 232–233, 241, 242, 257, 259–265, 269–270, 273, 276
N4169 group of galaxies, 120
National Institute of Chemical Physics and Biophysics, 161
National Optical Astronomy Observatory, 140
National Radio Astronomy Observatory, 61, 98
National Singing Festival, 25
Nazi Germany, 22, 172
near clusters, 120
neutrino-dominated dark matter, 153, 154–155, 158, 159, 161
neutrinos, 91, 154, 157
New Year parties, 72
Newtonian gravity, 164
NFW profile, 102, 104, 110
NGC 1835, 63
NGC 188, 62
NGC 2210, 63
NGC 3115, 97, 147
NGC 4472, 63
NGC 6388, 63
NGC 6791, 62
NGC 6822, 4
NGC 6946, 94
noctilucent clouds, 78
non-baryonic dark matter, 152, 154, 155
Nordita, 115
Nordic Optical Telescope, 143
Dark Matter and Cosmic Web Story Page 45