14. Morris, J. L., et al. 2015. Investigating Devonian trees as geo-engineers of past climates: Linking palaeosols to palaeobotany and experimental geobiology. Palaeontology 58: 787–801; Averill, C., Turner, B. L., Finzi, A. C. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543–545; Algeo, T. J., Scheckler, S. E. 2010. Land plant evolution and weathering rate changes in the Devonian. Journal of Earth Science 21: 75–78; Lenton, T. M., Daines, S. J., Mills, B. J. W. 2018. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews 178: 1–28; Isaacson, P. E., et al. 2008. Late Devonian–earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeography, Palaoeclimatology, Palaeoecology 268: 126–142.
15. Ghazoul, J., Sheil, D. 2010. Tropical Rain Forest Ecology, Diversity, and Conservation. Oxford: Oxford University Press.
16. Cleal, C. J., Oplustil, S., Thomas, B. A., Tenchov, Y. 2009. Pennsylvanian vegetation and climate in Variscan Euramaerica. Episodes 34: 3–12.
17. Thomas, B. A., Clearl, C. J. 2017. Arborescent lycophyte growth in the Late Carboniferous coal swamps. New Phytologist 218: 885–890; Wilson, J. P., et al. 2017. Dynamic Carboniferous tropical forests: New views of plant function and potential for physiological forcing of climate. New Phytologist 215: 1333–1353; Prestianni, C., et al. 2015. Early seed plants from Western Gondwana: Paleobiological and ecological implications based on Tournaisian (Lower Carboniferous) records from Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 417: 210–219; Retallack, G. J., Germanheins, J. 1994. Evidence from paleosols for the geological antiquity of rainforest. Science 265: 499–502; Wright, V. P. 2018. An early carboniferous humus from South Wales preserved by marine hydromorphic entombment. Applied Soil Ecology 123: 668–671; Lenton, T. M., Daines, S. J., Mills, B. J. W. 2018. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews 178: 1–28; Puttick, M. N., et al. 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. Current Biology 28: 733–745; Edwards, D., Kerp, H., Hass, H. 1998. Stomata in early land plants: An anatomical and ecophysiological approach. Journal of Experimental Botany 49: 225–278; Duckett, J. G., Pressel, S. 2018. The evolution of the stomatal apparatus: Intercellular spaces and sporophyte water relations in bryophytes—two ignored dimensions. Philosophical Transactions of the Royal Society of London B: Biological Sciences 373: 20160498; Ruszala, E. M., et al. 2011. Land plants acquired active stomatal control early in their evolutionary history. Current Biology 21: 1030–1035.
18. Garrouste, R., et al. 2012. A complete insect from the Late Devonian period. Nature 488: 82–85; Harrison, J. F., Kaiser, A., VandenBrooks, J. M. 2010. Atmospheric oxygen level and the evolution of insect body size. Proceedings of the Royal Society B: Biological Sciences 277: 1937–1946.
19. Meade, L., Jones, A. S., Butler, R. J. 2016. A revision of tetrapod footprints from the Late Carboniferous of the West Midlands, UK. PeerJ 4: e2718. doi: 10.7717/peerj.2718.
20. Meade, L., Jones, A. S., Butler, R. J. 2016. A revision of tetrapod footprints from the Late Carboniferous of the West Midlands, UK. PeerJ 4: e2718. doi: 10.7717/peerj.2718.
21. Meade, L., Jones, A. S., Butler, R. J. 2016. A revision of tetrapod footprints from the Late Carboniferous of the West Midlands, UK. PeerJ 4: e2718. doi: 10.7717/peerj.2718.
CHAPTER 2: A TROPICAL WORLD
1. Whitmore, T. C. 1998. An Introduction to Tropical Rainforests (2nd edition). Oxford: Oxford University Press.
2. Maslin, M. 2005. The longevity and resilience of the Amazon rainforest. In Y. Malhi, O. Phillips (eds.). Tropical Forests and Global Atmospheric Change. Oxford: Oxford University Press. Pp. 167–182; Morley, R. J. 2000. Origin and Evolution of Tropical Rain Forests. Chichester: John Wiley and Sons; Tabor, N. J., Poulsen, C. J. 2008. Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate. Palaeogeography, Palaeoclimatology, Palaeoecology 268: 293–310.
3. Corlett, R. T., Primack, R. 2011. Tropical Rain Forests: An Ecological and Biogeographical Comparison. London: Wiley-Blackwell; Basset, Y., et al. 2019. Arthropod diversity in a tropical forest. Science 338: 1481–1484; Campos-Arceiz, A., Blake, S. 2011. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecologia 37: 542–553; DryFlor et al. 2015. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353: 1383–1387; Walker, R., et al. 2014. The conservation of the world’s most threatened tortoise: The ploughshare tortoise (Astochelys yniphora) of Madagascar. Testudo 8: 68–75.
4. Cascales-Miñana, B., Cleal, C. J. 2014. The plant fossil record reflects just two great extinction events. Terra Nova 26: 195–200; Barnosky, A. D., et al. 2011. Has the Earth’s sixth mass extinction already arrived? Nature 471: 51–57; Morley, R. J. 2000. Origin and Evolution of Tropical Rain Forests. Chichester: John Wiley and Sons.
5. Cleal, C. J., Opluštil, S., Thomas, B. A., Tenchov, Y. 2009. Late Moscovian terrestrial biotas and palaeoenvironments of Variscan Euramerica. Netherlands Journal of Geosciences 88: 181–278; Montañez, I. P., et al. 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 314: 87–91; Benton, M. J., Tverdokhlebov, V. P., Surkov, M. V. 2004. Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432: 97–100; Cascales-Miñana, B., Cleal, C. J. 2014. The plant fossil record reflects just two great extinction events. Terra Nova 26: 195–200.
6. Linkies, A., Graeber, K., Knight, C., Leubner-Metzger, G. 2010. The evolution of seeds. New Phytologist 186: 817–831; Looy, C. V., Brugman, W. A., Dilcher, D. L., Visscher, H. 1999. The delayed resurgence of equatorial forests after the Permian-Triassic ecologic crisis. Proceedings of the National Academy of Sciences of the United States of America 96: 13857–13862; Schneebeli-Hermann, E., et al. 2012. Palynology of the Lower Triassic succession of Tulong, South Tibet—evidence for early recovery of gymnosperms. Palaeogeography, Palaeoclimatology, Palaeoecology 339–341: 12–24.
7. Frohlich, M. W., Chase, M. W. 2007. After a dozen years of progress the origin of the angiosperms is still a great mystery. Nature 450: 1184–1189; Doyle, J. 2012. Molecular and fossil evidence on the origin of angiosperms. Annual Review of Earth and Planetary Science 40: 301–326; Morley, R. J. 2011. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In M. B. Bush, J. R. Flenley, W. D. Gosling (eds.). Tropical Rainforest Responses to Climatic Change. Berlin: Springer-Verlag. Pp. 1–34; Silvestro, D., et al. 2021. Fossil data support a pre-Cretaceous origin of flowering plants. Nature Ecology and Evolution. doi.org/10.1038/s41559-020-01387-8; Feild, T. S., et al. 2004. Dark and disturbed: A new image of early angiosperm ecology. Paleobiology 30: 82–107; Davis, C. C., Webb, C. O., Wurdack, K. J., Jaramillo, C. A., Donoghue, M. J. 2005. Explosive radiation supports a mid-Cretaceous origin of modern tropical rain forests. American Naturalist 165: E36–E65; Boyce, C. K., Jung-Eun, L. 2010. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of the Royal Society B: Biological Sciences 485: 1–7.
8. Ghazoul, J. 2016. Dipterocarp Biology, Ecology, and Conservation. Oxford: Oxford University Press; Hu, S., Dilcher, D. L., Jarzen, D. M., Taylor, D. W. 2008. Early steps of angiosperm-pollinator coevolution. Proceedings of the National Academy of Sciences of the United States of America 105: 240–245; Duperon-Laudoueneix, M. 1991. Importance of fossil woods (conifers and angiosperms) discovered in continental Mesozoic sediments of northern equatorial Africa. Journal of African Earth Sciences 12: 391–396.
9. Wing, S. L., et al. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of neotropical rainforest. Proceedings of the National Academy of Sciences of the United States of America 106: 18627–18632.
1
0. Wing, S. L., et al. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of neotropical rainforest. Proceedings of the National Academy of Sciences of the United States of America 106: 18627–18632; Head, J. J., et al. 2009. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457: 715–717.
11. Johnson, K. R., Ellis, B. 2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary. Science 296: 2379–2383; Morley, R. J. 2000. Origin and Evolution of Tropical Rain Forests. Chichester: John Wiley and Sons; Morley, R. J. 2003. Interplate dispersal routes for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics 6: 5–20; Morley, R. J. 2011. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In M. B. Bush, J. R. Flenley, W. D. Gosling (eds.). Tropical Rainforest Responses to Climatic Change. Berlin: Springer-Verlag. Pp. 1–34.
12. Goldner, A., Herold, N., Huber, M. 2014. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition. Nature 511: 574–577; Dupont-Nivet, G., Hoorn, C., Konert, M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition. Evidence from pollen analysis of the Xining Basin. Geology 36: 987–990; Prasad, V., Strömberg, C. A. E., Alimohammadian, H., Sahni, A. 2005. Dinosaur coprolites and the early evolution of grasses and grazers. Science 310: 1177–1180; Osborne, C. O. 2008. Atmosphere, ecology and evolution: What drove the Miocene expansion of C4 grasslands? Journal of Ecology 96: 35–45.
13. Metcalfe, S. E., Nash, D. J. 2012. Introduction. In S. E. Metcalfe, D. J. Nash (eds.). Quaternary Environmental Change in the Tropics. London: John Wiley & Sons Ltd. Pp. 1–33; Deplazes, G., et al. 2013. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nature Geoscience 3: 213–217.
14. Hamon, N., et al. 2012. Growth of subtropical forests in Miocene Europe: The roles of carbon dioxide and Antarctic ice volume. Geology 40: 567–570; Cerling, T. E., Wang, Y., Quade, J. 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361: 344–345; Feakins, S. J., et al. 2013. Northeast African vegetation change over 12 m.y. Geology 41: 295–298; Salzmann, U., Haywood, A. M., Lunt, D. J., Valdes, P. J., Hill, D. J. 2008. A new global biome reconstruction and data-model comparison for the Middle Pliocene. Global Ecology and Biogeography 17: 432–447.
15. Martínez-Botí, M. A., et al. 2015. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518: 49–54; Bobe, R., Behrensmeyer, A. K. 2004. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 399–420; Heaney, L. R. 1991. A synopsis of climatic and vegetational change in Southeast Asia. Climatic Change 19: 53–61; Dennell R. W., Roebroeks, W. 2005. Out of Africa: An Asian perspective on early human dispersal from Africa. Nature 438: 1099–1104.
16. Roberts, P. 2019. Tropical Forests in Prehistory, History, and Modernity. Oxford: Oxford University Press; Corlett, R. T. 2011. Climate change in the tropics: The end of the world as we know it. Biological Conservation 151: 22–25; Hooghiemstra, H., Van der Hammen, T. 1998. Neogene and Quaternary development of the neotropical rain forest: The forest refugia hypothesis, and a literature overview. Earth-Science Reviews 44: 147–183; Rabett, R. J. 2012. Human Adaptation in the Asian Palaeolithic. Cambridge: Cambridge University Press.
17. Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M., Sachs, J. P. 2002. El Niño–like pattern in ice age tropical Pacific sea surface temperature. Science 297: 226–230; Pausata, F. S. R., Messori, G., Zhang, Q. 2016. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth and Planetary Science Letters 434: 298–307.
CHAPTER 3: “GONDWANAN” FORESTS AND THE DINOSAURS
1. Turner, A. H., Makovicky, P. J., Norell, M. A. 2007. Feather quill knobs in the dinosaur Velociraptor. Science 317: 1721.
2. Brusatte, S. 2018. The Rise and Fall of the Dinosaurs. London: Picador; Barrett, P. M., Rayfield, E. J. 2006 Ecological and evolutionary implications of dinosaur feeding behaviour. Trends in Ecology and Evolution 21: 217–224; Hummel, J., et al. 2008. In vitro digestibility of fern and gymnosperm foliage: Implications for sauropod feeding ecology and diet selection. Proceedings of the Royal Society B: Biological Sciences 275. doi: 10.1098/rspb.2007.1728; Colbert, E. H. 1993. Feeding strategies and metabolism in elephants and sauropod dinosaurs. American Journal of Science 293A: 1–10.
3. The Paleobiology Database (https://paleobiodb.org).
4. Dunne, E. M., et al. 2018. Diversity change during the rise of tetrapods and the impact of the “Carboniferous rainforest collapse.” Proceedings of the Royal Society B: Biological Sciences 285. doi: 10.1098/rspb.2017.2730.
5. Irmis, R. B., et al. 2007. A Late Triassic dinosauromorph assemblage from New Mexico and the rise of the dinosaurs. Science 317: 358–361; Whiteside, J. H., Grogan, D. S., Olsen, P. E., Kent, D. V. 2011. Climatically driven biogeographic provinces of Late Triassic tropical Pangea. Proceedings of the National Academy of Sciences of the United States of America 108: 8972–8977.
6. Whiteside, J. H., et al. 2015. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. Proceedings of the National Academy of Sciences of the United States of America 112: 7909–7913.
7. Salgado, L., et al. 2017. A new primitive Neornithischian dinosaur from the Jurassic of Patagonia with gut contents. Nature Scientific Reports 7: 42778; Han, F., Forster, C. A., Xu, X., Clark, J. M. 2017. Postcranial anatomy of Yinlong downsi (Dinosauria: Ceratopsia) from the Upper Jurassic Shishugou Formation of China and the phylogeny of basal ornithischians. Journal of Systematic Palaeontology 16: 1159–1187.
8. van de Schootbrugge, B., et al. 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience 2: 589–594; Volkheimer W., Rauhut O. W. M., Quattrocchio M. E., Martínez, M. A. 2008. Jurassic paleoclimates in Argentina, a review. Revista de la Asociación Geológica Argentina 63, 549–556; Van Der Meer, D. G., et al. 2014. Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proceedings of the National Academy of Sciences of the United States of America 111: 4380–4385; Yonetani, T., Gordon, H. B. 2001. Simulated changes in the frequency of extremes and regional features of seasonal/annual temperature and precipitation when atmospheric CO2 is doubled. Journal of Climate 14: 1765–1779.
9. Upchurch, P., Barett, P. M. 2000. The evolution of sauropod feeding mechanisms. In H.-D. Sues (ed.). Evolution of Herbivory in Terrestrial Vertebrates: Perspectives from the Fossil Record. Cambridge: Cambridge University Press. Pp. 79–122; Hummel, J., Clauss, M. 2011. Feeding and digestive physiology. In N. Klein, K. Remes, C. T. Gee, P. M. Sander (eds.). Biology of the Sauropod Dinosaurs: Understanding the Life of Giants. Bloomington: Indiana University Press. Pp. 11–33; Sander, P. M., et al. 2011. Biology of the sauropod dinosaurs: The evolution of gigantism. Biological Reviews 86: 117–155; Gee, C. T. 2011. Dietary options for the sauropod dinosaurs from an integrated botanical and paleobotanical perspective. In N. Klein, K. Remes, C. T. Gee, P. M. Sander (eds.). Biology of the Sauropod Dinosaurs: Understanding the Life of Giants. Bloomington: Indiana University Press. Pp. 34–57; Upchurch, P., Barrett, P. M. 2005. Phylogenetic and taxic perspectives on sauropod diversity. In K. A. Curry Rogers, J. A. Wilson (eds.). The Sauropods: Evolution and Paleobiology. Berkeley: University of California Press. Pp. 104–124; Poulsen, J. R., et al. 2018. Ecological consequences of forest elephant declines for Afrotropical forests. Conservation Biology 32: 559–567; Mustoe, G. E. 2007. Coevolution of cycads and dinosaurs. Cycad Newsletter 30: 6–9; Leslie, A. 2011. Predation and protection in the macroevolutionary history of conifer cones. Proceedings of the Royal Society B: Biological Sciences 278. doi: 10.1098/rspb.2010.2648; Butler, R. J., Barrett, P. M., Kenrick, P., Penn, M. G. 2009. Testing co-evolutionary hypothe
ses over geological timescales: Interactions between Mesozoic non-avian dinosaurs and cycads. Biological Reviews 84: 73–89.
10. Bakker, R. T. 1978. Dinosaur feeding behaviour and the origin of flowering plants. Nature 274: 661–663; Weishampel, D. B., Norman D. B. 1989. Vertebrate herbivory in the Mesozoic; jaws, plants, and evolutionary metrics. Geological Society of America Special Paper 238:87–101.
11. Barrett, P. M., Willis, K. J. 2001. Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biological Reviews 76: 411–447.
12. Barrett, P. M., Willis, K. J. 2001. Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biological Reviews 76: 411–447; Weishampel, D. B., Jianu, C.-M. 2000. Plant-eaters and ghost lineages: Dinosaurian herbivory revisited. In H.-D. Sues (ed.). Evolution of Herbivory in Terrestrial Vertebrates: Perspectives from the Fossil Record. Cambridge: Cambridge University Press. Pp. 123–143; Erickson, G. M., et al. 2012. Complex dental structure and wear biomechanics in Hadrosaurid dinosaurs. Science 338: 98–101; Molnar, R. E., Clifford, H. T. 2000. Gut contents of a small ankylosaur. Journal of Vertebrate Palaeontology 20: 194–196.
13. Poulsen, J. R., et al. 2018. Ecological consequences of forest elephant declines for Afrotropical forests. Conservation Biology 32: 559–567; Godefroit, P., Golovneva, L., Shcheptov, S., Garcia, G., Alekseev, P. 2009. The last polar dinosaurs: High diversity of latest Cretaceous arctic dinosaurs in Russia. Naturwussenschaften 96: 495–501; Paik, I. S., Kim, H. J., Huh, M. 2012. Dinosaur egg deposits in the Cretaceous Gyeongsang Supergroup, Korea: Diversity and paleobiological implications. Journal of Asian Earth Sciences 56: 135–146.
Jungle Page 35