14. Voeten, D. F. A. E., et al. 2018. Wing bone geometry reveals active flight in Archaeopteryx. Nature Communications 9: 923. doi: 10.1038/s41467-018-03296-8; Barrowclough, G. F., Cracraft, J., Klicka, J., Zink, R. M. 2016. How many kinds of birds are there and why does it matter? PLOS ONE 11: e0166307. doi: 10.1371/journal.pone.0166307.
15. Dehling, D. M., et al. 2020. Similar composition of functional roles in Andean seed-dispersal networks, despite high species and interaction turnover. Ecology 101(7): e03028. doi: 10.1002/ecy.3028; Gorchov, D. L., Cornejo, F., Ascorra, C., Jaramillo, M. 1993. The role of seed dispersal in the natural regeneration of rain forest after strip-cutting in the Peruvian Amazon. Vegetatio 107: 339–349; David, J. P., Manakadan, R., Ganesh, T. 2015. Frugivory and seed dispersal by birds and mammals in the coastal tropical dry evergreen forests of southern India: A review. Tropical Ecology 56: 41–55; McConkey, K. R., Meehan, H. J., Drake, D. R. 2004. Seed dispersal by Pacific pigeons (Ducula pacifica) in Tonga, western Polynesia. Emu—Austral Ornithology 104: 369–376; Bregman, T., et al. 2016. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proceedings of the Royal Society B: Biological Sciences 283: 20161289. doi: 10.1098/rspb.2016.1289.
CHAPTER 4: “TREE HOUSES” FOR THE FIRST MAMMALS
1. Janis, C. M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology, Evolution, and Systematics 14: 467–500; Li, J., Wang, Y., Wang, Y., Li, C. 2001. A new family of primitive mammal from the Mesozoic of western Liaoning, China. Chinese Science Bulletin 46: 782–785; Gore, R. 2020. The rise of mammals. National Geographic. www.nationalgeographic.com/science/prehistoric-world/rise-mammals; Berg, M. 2016. A miniscule model for research. Lab Animal 45: 133. doi: 10.1038/laban.981; Lockyer, C. 1976. Body weights of some species of large whales. Journal du Conseil Permanent International pour l’Exploration de la Mer 36: 259–273.
2. Renne, P. R., et al. 2015. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350: 76–78; Barnosky, A. D., et al. 2011. Has the Earth’s sixth mass extinction already arrived? Nature 471: 51–57; Smith, F. A., et al. 2010. The evolution of maximum body size of terrestrial mammals. Science 330: 1216–1219.
3. Wiejers, J. W. H., Scouten, S., Sluijs, A., Brinkhuis, H., Damsté, J. S. S. 2007. Warm arctic continents during the Palaeocene-Eocene thermal maximum. Earth and Planetary Science Letters 261: 230–238; Sarkar, S., et al. 2019. Late Eocene onset of the Proto-Antarctic Circumpolar Current. Scientific Reports 9. doi: 10.1038/s41598-019-46253-1; Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693; Retallack, G. 2001. Cenozoic expansion of grasslands and climatic cooling. Journal of Geology 109: 407–426.
4. Rogers, C. S., et al. 2015. The Chinese Pompeii? Death and destruction of dinosaurs in the Early Cretaceous of Lujiatun, NE China. Palaeogeography, Palaeoclimatology, Palaeoecology 427: 89–99; Zhang, F., et al. 2010. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463: 1075–1078; Chen, P-J., Dong, Z-M., Zhen, S-N. 1998. An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391: 147–152; Luo, Z-X., Yuan, C-X., Meng, Q-J., Ji, Q. 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476: 442–445; Rink, W. J., Thompson, J. W. 2015. Encyclopedia of Scientific Dating Methods. Dordrecht: Springer.
5. Maor, R., Dayan, T., Ferguson-Gow, H., Jones, K. E. 2017. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nature Ecology & Evolution 1: 1889–1895; Bhullar, B.-A. S., et al. 2019. Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function. Nature 566: 528–532; Rowe, T. B., Macrini, T. E., Luo, Z-X. 2011. Fossil evidence on origin of the mammalian brain. Science 332: 955–957; Gill, P. G., et al. 2014. Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512: 303–305.
6. dos Reis, M., et al. 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society B: Biological Sciences 279: 3491–3500; Zheng, X., Bi, S., Wang, X., Meng, J. 2013. A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500: 199–203; Luo, Z-X., Ji, Q., Wible, J. R., Yuan, C-X. 2003. An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 1934–1940; Ji, Q., et al. 2002. The earliest known eutherian mammal. Nature 416: 816–822.
7. Maor, R., Dayan, T., Ferguson-Gow, H., Jones, K. E. 2017. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nature Ecology & Evolution 1: 1889–1895; Grossnickle, D. M., Smith, S. M., Wilson, G. O. 2019. Untangling the multiple ecological radiations of early mammals. Trends in Ecology and Evolution 34: 936–949; Luo, Z-X., Yuan, C-X., Meng, Q-J., Ji, Q. 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476: 442–445; Shattuck, M. R., Williams, S. A. 2010. Arboreality has allowed for the evolution of increased longevity in mammals. Proceedings of the National Academy of Sciences of the United States of America 107: 4635–4639; Meng, Q. J., et al. 2015. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347: 764–768; Ji, Q., Luo, Z-X., Yuan, C-X., Tabrum, A. R. 2006. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311: 1123–1127; Meng, Q-J., et al. 2017. New gliding mammaliaforms from the Jurassic. Nature 548: 291–296; Luo, Z-X., et al. 2017. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548: 326–329.
8. Hu, Y., Meng, J., Wang, Y., Li, C. 2005. Large Mesozoic mammals fed on young dinosaurs. Nature 433: 149–152; Grossnickle, D. M., Smith, S. M., Wilson, G. O. 2019. Untangling the multiple ecological radiations of early mammals. Trends in Ecology and Evolution 34: 936–949; Grossnickle, D. M., Newham, E. 2016. Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K-Pg boundary. Proceedings of the Royal Society B: Biological Sciences 283. doi: 10.1098/rspb.2016.0256; Chen, M., Strömberg, C. A. E., Wilson, G. P. 2019. Assembly of modern mammal community structure driven by Late Cretaceous dental evolution, rise of flowering plants, and dinosaur demise. Proceedings of the National Academy of Sciences of the United States of America 116: 9931–9940; Sun, G., et al. 2002. Archaefructaceae, a new basal angiosperm family. Science 296: 899–904; Wilson, G. P., et al. 2012. Adaptive radiation of multituberculate mammals before the extinction of dinosaur. Nature 483: 457–460.
9. Lyson, T. R., et al. 2019. Exceptional continental record of biotic recovery after the Cretaceous-Paleogene mass extinction. Science 366: 977–983.
10. Nichols, D. J., Johnson, K. R. 2008. Plants and the K-T Boundary. Cambridge: Cambridge University Press; Cascales-Miñana, B., Cleal, C. J. 2014. The plant fossil record reflects just two great extinction events. Terra Nova 26: 195–200; Kowalczyk, J. B., et al. 2018. Multiple proxy estimates of atmospheric CO2 from an Early Paleocene rainforest. Paleoceanography and Paleoclimatology 33: 1427–1438; Lyson, T. R., et al. 2019. Exceptional continental record of biotic recovery after the Cretaceous-Paleogene mass extinction. Science 366: 977–983.
11. Huurdeman, E. P., et al. 2020. Rapid expansion of meso-megathermal rain forests into the southern high latitudes at the onset of the Paleocene-Eocene Thermal Maximum. Geology. doi: 10.1130/G47343.1; Janis, C. M. 1989. A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32: 463–481; Prothero, D. R., Foss, S. E. (eds.). 2007. The Evolution of Artiodactyls. Baltimore: Johns Hopkins University Press; Gingerich, P. D., ul Haq, M., Zalmout, I. S., Hussain Khan, I., Malkani, M. S. 2001. Origin of whales from early Artiodactyls: Hands and feet of Eocene protocetidae from Pakistan. Science 293: 2239–2242.
&nb
sp; 12. Schaal, S., Ziegler, W. 1993. Messel: An Insight into the History of Life and of the Earth. Oxford: Oxford University Press; Collinson, M. E., Manchester, S. R., Wilde, V., Hayes, P. 2010. Fruit and seed floras from exceptionally preserved biotas in the European Paleogene. Bulletin of Geosciences 85: 155–162.
13. Jordano, P. 2000. Fruits and frugivory. In M. Fenner (ed.). The Ecology of Regeneration in Plant Communities. Wallingford: CAB International. Pp. 125–166; Eriksson, O. 2008. Evolution of seed size and biotic seed dispersal in angiosperms: Paleoecological and neoecological evidence. International Journal of Plant Sciences 169: 863–870; Tiffney, B. H. 1984. Seed size, dispersal syndromes, and the rise of the angiosperms: Evidence and hypothesis. Annals of the Missouri Botanical Garden 71: 551–576.
14. Kargaranbafghi, F., Neubauer, F. 2018. Tectonic forcing to global cooling and aridification at the Eocene-Oligocene transition in the Iranian plateau. Global and Planetary Change 171: 248–254.
15. Solounias, N., Semprebon, G. 2002. Advances in the reconstruction of ungulate ecomorphology with applications to early fossil equids. American Museum Novitates 3366: 1–49.
16. Semprebon, G. M., Rivals, F., Janis, C. M. 2019. The role of grass vs. exogenous abrasives in the paleodietary patterns of North American ungulates. Frontiers in Ecology and Evolution. doi: 10.3389/fevo.2019.00065; Semprebon, G. M., Rivals, F., Solounias, N., Hulbert Jr., R. C. 2016. Paleodietary reconstruction of fossil horses from the Eocene through Pleistocene of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 442: 110–127.
17. Badlangana, N. L., Adams, J. W., Manger, P. R. 2009. The giraffe (Giraffa camelopardalis) cervical vertebral column: A heuristic example in understanding evolutionary processes? Zoological Journal of the Linnean Society 155: 736–757; Mitchell, G., Skinner, J. D. 2003. On the origin, evolution and phylogeny of giraffes Giraffa camelopardalis. Transactions of the Royal Society of South Africa 58: 51–73..
18. Dumont, E. R., et al. 2011. Morphological innovation, diversification and invasion of a new adaptive zone. Proceedings of the Royal Society B: Biological Sciences 279. doi: 10.1098/rspb.2011.2005; Eriksson, O. 2014. Evolution of angiosperm seed disperser mutualisms: The timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biological Reviews 91: 168–186; Shilton, L. A., et al. 1999. Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proceedings of the Royal Society B: Biological Sciences 266. doi: 10.1098/rspb.1999.0625.
19. Beard, K. C., Qi, T., Dawson, M. R., Wang, B., Li, C. 1994. A diverse new primate fauna from Middle Eocene fissure-fillings in southeastern China. Nature 368: 604–609; Sussman, R. W., Rasmussen, D. T., Raven, P. H. 2013. Rethinking primate origins again. American Journal of Primatology 75: 95–106.
CHAPTER 5: THE LEAFY CRADLES OF OUR ANCESTORS
1. Whiten, A., et al. 1999. Cultures in chimpanzees. Nature 399: 682–685; The Chimpanzee Sequencing and Analysis Consortium. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87.
2. Darwin, C. 2004 (1871). The Descent of Man, and Selection in Relation to Sex. London: Penguin; Domínguez-Rodrigo, M. 2014. Is the “Savanna Hypothesis” a dead concept for explaining the emergence of the earliest hominins? Current Anthropology 55(1): 59–81; Dennell R. W., Roebroeks, W. 2005. Out of Africa: An Asian perspective on early human dispersal from Africa. Nature 438: 1099–1104.
3. Hamon, N., et al. 2012. Growth of subtropical forests in Miocene Europe: The roles of carbon dioxide and Antarctic ice volume. Geology 40: 567–570; Nelson, S. 2003. The Extinction of Sivapithecus: Faunal and Environmental Changes in the Siwaliks of Pakistan. American School of Prehistoric Research Monographs 1. Boston: Brill Academic Publishers.
4. Macchiarelli, R., Bergeret-Medina, A., Marchi, D., Wood, B. 2020. Nature and relationships of Sahelanthropus tchadensis. Journal of Human Evolution 149. doi: 10.1016/j.jhevol.2020.102898; White, T., et al. 2009. Ardipithecus ramidus and the paleobiology of early hominids. Science 326: 75–86; Haile-Selassie, Y., Suwa, G., White, T. D. 2004. Late Miocene teeth from Middle Awash, Ethiopia, and early hominid dental evolution. Science 303: 1503–1505; White, T., et al. 2009. Ardipthecus ramidus and the paleobiology of early hominids. Science 326: 75–86; Prado-Martinez, J., et al. 2013. Great ape genetic diversity and population history. Nature 499: 471–475.
5. White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P., Suwa, G. 2015. Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proceedings of the National Academy of Sciences of the United States of America 112: 4877–4884; WoldeGabriel, G., et al. 2009. The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science 326(5949): 65–65e5; White, T., et al. 2009. Ardipithecus ramidus and the paleobiology of early hominids. Science 326: 75–86; Levin, N. E., Simpson, S. W., Quade, J., Cerling, T. E., Frost, S. R. 2008. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. In J. Quade, J. G. Wynn (eds.). The Geology of Early Humans in the Horn of Africa. Geological Society of America Special Paper 446. Boulder: Geological Society of America. Pp. 215–234.
6. Brunet, M., et al. 2002. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418: 145–151; Pickford, M., Senut, B., Gommery, D., Treil, J. 2002. Bipedalism in Orrorin tugenensis revealed by its femora. Comptes Rendus Palevol 1(4): 191–203.
7. Crompton, R. H., Sellers, W. I., Thorpe, S. K. S. 2010. Arboreality, terrestriality and bipedalism. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365: 3301–3314; Elton, S. 2008. The environmental context of human evolutionary history in Eurasia and Africa. Journal of Anatomy 212: 377–393; Pusey, A. E., Pintea, L., Wilson, M. L., Kamenya, S., Goodall, J. 2007. The contribution of long-term research at Gombe National Park to chimpanzee conservation. Conservation Biology 21: 623–634.
8. Johanson, D. C., Maitland, A. E. 1981. Lucy: The Beginning of Humankind. St. Albans: Granada; Latimer, B., Lovejoy, C. O. 1989. The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality. American Journal of Physical Anthropology 78(3): 369–386.
9. Harcourt-Smith, W. E. H., Aiello, L. C. 2004. Fossils, feet and the evolution of human bipedal locomotion. Journal of Anatomy 204: 403–416; Montgomery, S. 2018. Hominin brain evolution: The only way is up. Current Biology 28: R784–R802; Harmand, S., et al. 2015. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521: 310–315.
10. Lee-Thorp, J. A., van der Merwe, N. J., Brain, C. K. (1994). Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution 27: 361–372.; Sponheimer, M., et al. 2013. Isotopic evidence of early hominin diets. Proceedings of the National Academy of Sciences of the United States of America 110(26): 10513–10518.
11. Green, D. J., Alemseged, Z. 2012. Australopithecus afarensis scapular ontogeny, function, and the role of climbing in human evolution. Science 338: 514–517; Ruff, C. 2009. Relative limb strength and locomotion in Homo habilis. American Journal of Physical Anthropology 138(1): 90–100; Sponheimer, M., et al. 2006. Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science 314: 980–982.
12. Feakins, S. J., et al. 2013. Northeast African vegetation change over 12 m.y. Geology 41(3): 295–298; Bonnefille, R. 2010. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Global and Planetary Change 72: 390–411.
13. Levin, N. E. 2015. Environment and climate of early human evolution. Annual Review of Earth and Planetary Sciences 43: 405–429; Levin, N. E., Brown, F. H., Behrensmeyer, A. K., Bobe, R., Cerling, T. E. 2011. Paleosol carbonates form the Omo Group: Isotopic records of local and regional environmental change in East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 307: 75–89; Robinson, J. R., Rowan, J., Campisano, J., Wynn, J. G., Reed, K
. E. 2017. Late Pliocene environmental change during the transition from Australopithecus to Homo. Nature Ecology & Evolution 1: 0159; White, T. D., et al. 2006. Asa Issie, Aramis and the origin of Australopithecus. Nature 440: 883–889; Saylor, B. Z., et al. 2019. Age and context of mid-Pliocene hominin cranium from Woranso-Mille, Ethiopia. Nature 573: 220–224; Kingston, J. D., Harrison, T. 2007. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 243: 272–306; Cerling, T. E., Harris, J. M., Leakey, M. G., Passey, B. H., Levin, N. E. 2010. Stable carbon and oxygen isotopes in East African mammals: Modern and fossil. In L. Werdelin, W. J. Sanders (eds.). Cenozoic Mammals of Africa. London: University of California Press. Pp. 941–952.
14. Carbonell, E., et al. 2008. The first hominin of Europe. Nature 452: 465–469; Lordkipanidze, D., et al. 2013. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342: 326–331; Ashton, N., et al. 2014. Hominin footprints from Early Pleistocene deposits at Happisburgh, UK. PLOS ONE 9(2): e88329; Scott, G. R., Gilbert, L. 2009. The oldest hand-axes in Europe. Nature 461: 82–85; Dennell R. W., Roebroeks, W. 2005. Out of Africa: An Asian perspective on early human dispersal from Africa. Nature 438: 1099–1104; Zaim, Y., et al. 2011. New 1.5 million-year-old Homo erectus maxilla from Sangiran (Central Java, Indonesia). Journal of Human Evolution 61(4): 363–376.
15. Smith, R. J., Jungers, W. L. 1997. Body mass in comparative primatology. Journal of Human Evolution 32: 523–559; Zhang, Y., Harrison, T. 2017. Gigantopithecus blacki: A giant ape from the Pleistocene of Asia revisited. American Journal of Physical Anthropology, Supplement Yearbook of Physical Anthropology 162: 153–177; Louys, J., Curnoe, D., Tong, H. 2007. Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 243: 152–173.
Jungle Page 36