Metabolic Autophagy

Home > Other > Metabolic Autophagy > Page 48
Metabolic Autophagy Page 48

by Siim Land


  Simple Keto the Easiest Ketogenic Diet Book

  Target Keto the Targeted Ketogenic Diet Book

  Intermittent Fasting and Feasting

  Keto Adaptation Manual

  References

  Here are all the references and studies mentioned in this book.

  * * *

  [1] Bernard C. (1878) ‘Leçons sur les phénomènes de la vie communs aux animaux et aux vegetaux,’ Paris, Bailliere JB, editor.

  [2] Starling, EH. (1923) 'The Wisdom of the Body', British Medical Journal, October 20;2(3277):685-90.

  [3] Cannon WB: Wisdom of the Body, New York, W. W. Norton & Company; Rev. and Enl. Ed edition (April 17, 1963).

  [4]Martinez, D.E. (1998) 'Mortality Patterns Suggest Lack of Senescence in Hydra', Experimental Gerontology, Vol 33(3), p 217-225.

  [5] Beck, S. and Bharadwaj, R. (1972) 'Reversed Development and Cellular Aging in an Insect', Science, Vol 178(4066), p 1210-1211.

  [6] López-Ótin C. et al. (2013) 'The Hallmarks of Aging', Vol 153(6), p 1194-1217.

  [7]Harman, D. (1956) 'Aging: A Theory Based on Free Radical and Radiation Chemistry', Journal of Gerontology, Vol 11(3), p 298-300.

  [8] Harman, D. (1972) 'The biologic clock: the mitochondria?', Journal of the American Geriatrics Society, April 20(4), p 145-147.

  [9] Schriner, SE. et al (2005) 'Extension of murine life span by overexpression of catalase targeted to mitochondria', Science, Vol 308(5730), p 1909-1911.

  [10] Miguel, J. et al (1980) 'Mitochondrial role in cell aging', Experimental Gerontology, Vol 15(6), p 575-591.

  [11] Trifunovic, A. et al (2005) 'Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production', Proceedings of the National Academy of Sciences of the United States of America, Vol 102(50), p 17993-17998.

  [12] Wei, YH. et al (2001) 'Mitochondrial theory of aging matures--roles of mtDNA mutation and oxidative stress in human aging', Zhonghua Yi Xue Za Zhi (Taipei), Vol 64(5), p 259-270.

  [13] Fontana, L. et al (2013) 'Dietary Restriction, Growth Factors and Aging: from yeast to humans', Science, Vol 328(5976), p 321-326.

  [14] Pérez, V. et al (2009) 'Is the Oxidative Stress Theory of Aging Dead?', Biochimica et Biophysica Acta, Vol 1790(10), p 1005-1014.

  [15] Van Raamsdonk, J.M. and Hekimi, S. (2009) 'Deletion of the Mitochondrial Superoxide Dismutase sod-2 Extends Lifespan in Caenorhabditis elegans', PLOS Genetics, Vol 5(2).

  [16] Bjelakovic, G. et al (2007) 'Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention', JAMA, Vol 297(8), p 842-857.

  [17] Boffetta, P. et al (2010) 'Fruit and Vegetable Intake and Overall Cancer Risk in the European Prospective Investigation Into Cancer and Nutrition (EPIC)', JNCI: Journal of the National Cancer Institute, Vol 102(8), p 529-537.

  [18]Halliwell, B. (2012) 'Free radicals and antioxidants: updating a personal view', Nutrition Reviews, Vol 70(5), p 257-265.

  [19]Tapia, P. (2006) 'Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “Mitohormesis” for health and vitality', Medical Hypotheses, Vol 66(4), p 832-843.

  [20] Geolotto, G. et al (2004) 'Insulin generates free radicals by an NAD(P)H, phosphatidylinositol 3'-kinase-dependent mechanism in human skin fibroblasts ex vivo', Diabetes, Vol 53(5), p 1344-1351.

  [21] Goldstein, BJ. et al (2005) 'Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets', Diabetes, Vol 52(2), p 311-21.

  [22] Tatar, M. et al (2003) 'The endocrine regulation of aging by insulin-like signals', Science, Vol 299(5611), p 1346-1351.

  [23] Kenyon, C. et al (1993) 'A C. elegans mutant that lives twice as long as wild type', Vol 366(6454), p 461-464.

  [24] Lin, K. et al (1997) 'daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans', Science, Vol 278(5341), p 1319-22.

  [25] Lin, K. et al (2001) 'Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling', Nature Genetics, Vol 28(2), p 139-145.

  [26] Lee, SJ. et al (2009) 'Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression', Cell Metabolism, Vol 10(5), p 379-391.

  [27] Tatar, M. et al (2001) 'A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function', Science, Vol 292(5514), p 107-110.

  [28] Clancy, DJ. et al (2001) 'Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein', Vol 292(5514), Vol 104-106.

  [29] Hwangbo, DS. (2004) 'Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body', Nature, Vol 429(6991), p 562-566.

  [30] Holzenberger, M. et al (2003) 'IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice', Nature, Vol 421(6919), p 182-187.

  [31] Blüher, M. et al (2003) 'Extended longevity in mice lacking the insulin receptor in adipose tissue', Vol 299(5606), p 572-574.

  [32] Longo, VD (2003) 'The Ras and Sch9 pathways regulate stress resistance and longevity', Experimental Gerontology, Vol 38(7), p 807-811.

  [33] Tissenbaum, HA. and Guarente, L. (2001) 'Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans', Vol 410(6825), p 227-230.

  [34]Murphy C.T., Hu P.J. 'Insulin/insulin-like growth factor' (December 26, 2013), WormBook, ed. The C. elegans Research Community.

  [35]Altintas, O. et al (2016) 'The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster', BMB Reports, Vol 49(2), p 81-92.

  [36] Klass M. and Hirsh D. (1976) 'Non-ageing developmental variant of Caenorhabditis elegans', Nature, Vol 260(5551), p 523-525.

  [37] Kaeberlein, M. et al (1999) 'The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms', Genes & Development, Vol 13(19), p 2570-2580.

  [38] Guarente, L. (2007) 'Sirtuins in aging and disease', Cold Spring Harbor Symposia on Quantitative Biology, Vol 72, p 483-488.

  [39] Kanfi, Y. et al (2012) 'The sirtuin SIRT6 regulates lifespan in male mice', Nature, Vol 483, p 218-221.

  [40] Mostoslavsky, R. (2006) 'Genomic instability and aging-like phenotype in the absence of mammalian SIRT6', Cell, Vol 124(2), p 315-329.

  [41] Sedelnikova, OA. et al (2004), 'Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks', Nat Cell Biology, Vol 6(2), p 168-170.

  [42] Chung, S. et al (2010) 'Regulation of SIRT1 in cellular functions: role of polyphenols', Archives of Biochemistry and Biophysics, Vol 501(1), p 79-90.

  [43] Wang, RH. et al (2008) 'Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice', Cancer Cell, Vol 14(4), p 312-323.

  [44] Lee, H.I. et al (2008) 'A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy', PNAS, Vol 105(9), p 3374-3379.

  [45] Yang, NC. et al (2015) 'Up-regulation of nicotinamide phosphoribosyltransferase and increase of NAD+ levels by glucose restriction extend replicative lifespan of human fibroblast Hs68 cells', Biogerontology, Vol 16(1), p 31-42.

  [46] Houtkooper, R.H. and Auwerx, J. (2012) 'Exploring the therapeutic space around NAD+', Vol 199(2), p 205.

  [47] Colman, RJ. et al (2009) 'Caloric restriction delays disease onset and mortality in rhesus monkeys', Science, Vol 325(5937), p 201-204.

  [48] Ingram, D.K. and Roth, G.S. (2015) 'Calorie restriction mimetics: Can you have your cake and eat it, too?', Ageing Research Reviews, Vol 20, p 46-62.

  [49] Chen, D. et al (2005) 'Increase in activity during calorie restriction requires Sirt1', Science, Vol 310(5754), p 1641.

  [50] Cantó, C. et al (2009) 'AMPK regulates energy expenditure by modulati
ng NAD+ metabolism and SIRT1 activity', Nature, Vol 458(7241), p 1056-1060.

  [51] Duan, W. (2013) 'Sirtuins: from metabolic regulation to brain aging', Frontiers of Aging Neuroscience.

  [52] Srivastava, S. et al (2013) 'A ketogenic diet increases brown adipose tissue mitochondrial proteins and UCP1 levels in mice', IUBMB Life, Vol 65(1), p 58-66.

  [53] Csiszar, A. et al (2009) 'Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1', Mechanisms of Ageing and Development, Vol 130(8), p 518-527.

  [54] Gehart-Hines, Z. et al (2011) 'The cAMP/PKA Pathway Rapidly Activates SIRT1 to Promote Fatty Acid Oxidation Independently of Changes in NAD+', Molecular Cell, Vol 44(6), p 851-863.

  [55] Raynes, R.R. (2013) 'SIRT1 Regulation of the Heat Shock Response in an HSF1-Dependent Manner and the Impact of Caloric Restriction', Scholar Commons, 4567.

  [56] Ramis, MR. et al (2015) 'Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases', Mechanisms of Ageing and Development, 146-148:28-41.

  [57]Beek, C.B. et al (2013) 'Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice', Vol 342(6158).

  [58] Meléndez, A. et al (2003) 'Autophagy genes are essential for dauer development and life-span extension in C. elegans', Vol 301(5638), p 1387-1391.

  [59] Morselli, E. et al (2010) 'Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy', Cell Death & Disease, Vol 1(1).

  [60] Lamb, CA., Yoshimori, T. and Tooze SA. (2013) 'The autophagosome: origins unknown, biogenesis complex', Nature Reviews Molecular Cell Biology, Vol 14(12), p 759-774.

  [61]Carlson, A.J. and Hoelzel, F. (1946) 'Apparent Prolongation of the Life Span of Rats by Intermittent Fasting: One Figure', The Journal of Nutrition, Vol 31(3), p 363-375.

  [62] Wei, M. et al (2017) 'Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease', Science Translational Medicine, Vol 9(377).

  [63] Fontana, L., Longo, VD., and Partridge, L. (2010) ‘Dietary Restriction, Growth Factors and Aging: from yeast to humans’, Science. 2010 Apr 16; 328(5976): 321–326.

  [64] Kalsi, D.S. (2015) 'What is the effect of fasting on the lifespan of neurons?', Ageing Research Reviews, Vol 24(B), p 160-165.

  [65] Ramsey, JJ. et al (2000) 'Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study', Experimental Gerontology, Vol 35(9-10), p 1131-1149.

  [66] Mattison, J.A. et al (2017) 'Caloric restriction improves health and survival of rhesus monkeys', Nature Communications, Vol 8(14063).

  [67] Heilbronn, LK. et al (2005) 'Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting', Obesity Research, Vol 13(3), p 574-581.

  [68] Nemoto, S. et al (2005) 'SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}', Journal of Biological Chemistry, Vol 280(16), p 16456-60.

  [69] Sack, MN. and Finkel, T. (2012) 'Mitochondrial metabolism, sirtuins, and aging', Cold Spring Harbor Perspectives in Biology, Vol 4(12).

  [70] Lamb CA, Yoshimori T, Tooze SA. (2013) ‘The autophagosome: origins unknown, biogenesis complex’, Nature Reviews Molecular Cell Biology. 2013;14:759–74.

  [71] Apfield, J. et al (2004) 'The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans', Genes & Development, Vol 18(24), p 3004-3009.

  [72] Blüher, M. et al (2003) 'Extended longevity in mice lacking the insulin receptor in adipose tissue', Science, Vol 299(5606), p 572-574.

  [73] Jia, K. et al (2004) 'The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span', Development, Vol 131(16), p 3897-3906.

  [74] Hsu, AL. (2003) 'Regulation of aging and age-related disease by DAF-16 and heat-shock factor', Science, Vol 300(5622), p 1142-1145.

  [75] Hercus, MJ. et al (2003) 'Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress', Biogerontology, Vol 4(3), p 149-156.

  [76] Lin, K. et al (2001) 'Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling', Nature Genetics, Vol 28(2), p 139-145.

  [77] Wang, M.C. et al (2003) 'JNK Signaling Confers Tolerance to Oxidative Stress and Extends Lifespan in Drosophila', Developmental Cell, Vol 5(5), p 811-816.

  [78] Martins, R. et al (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity', Aging Cell, Vol 15(2), p 196-207.

  [79] Nakae, J. et al (2008) 'The FoxO transcription factors and metabolic regulation', FEBS Letters, Vol 582(1), p 54-67.

  [80] Peng, SL. (2008) 'Foxo in the immune system', Oncogene, Vol 27, p 2337-2344.

  [81] Dobson, A.J. et al (2017) 'Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets', Cell Reports, Vol 18(2), p 299-306.

  [82] Duan, W. (2013) 'Sirtuins: from metabolic regulation to brain aging', Frontiers of Aging Neuroscience.

  [83] Palacios, OM. et al (2009) 'Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle', Aging (Albany NY).

  [84]Imae, M. et al (2003) 'Nutritional and hormonal factors control the gene expression of FoxOs, the mammalian homologues of DAF-16', Journal of Molecular Endocrinology, Vol 30(2), p 253-262.

  [85] Puigserver, P. et al (2003) 'Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction', Nature, Vol 423(6939), p 550-555.

  [86] Kaestner, K.H. (2008) 'A Two-Step Pathway to Resist Fasting', Cell Metabolism, Vol 8(6), p 449-451.

  [87] Ropelle, E. et al (2009) 'Acute exercise modulates the Foxo1/PGC-1α pathway', The Journal of Physiology, Vol 587(9), p 2069-2076.

  [88] Sanchez, A. (2015) 'FoxO transcription factors and endurance training: a role for FoxO1 and FoxO3 in exercise-induced angiogenesis', The Journal of Physiology, Vol 593(pt2), p 363-364.

  [89] Sanchez, AM. et al (2014) 'FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis', Cellular and Molecular Life Sciences, Vol 71(9), p 1657-1671.

  [90] Donovon, M. and Marr, M.T. (2016) 'dFOXO Activates Large and Small Heat Shock Protein Genes in Response to Oxidative Stress to Maintain Proteostasis in Drosophila', Jounral of Biological Chemistry, Vol 291(36), 19042–19050.

  [91] Polesello, C. and Le Bourg, E. (2017) 'A mild cold stress that increases resistance to heat lowers FOXO translocation in Drosophila melanogaster', Biogerontology, Vol 18(5), p 791-801.

  [92] Bakker WJ et al (2007) 'FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2', Molecular Cell, Vol 28(6), p 941-953.

  [93] McClintock, B. The Nobel Prize in Physiology or Medicine 1983

  [94] Blackburn, E. Greider, C.W., and Szostak, J.W. The Nobel Prize in Physiology or Medicine 2009

  [95] Eisenberg, D. (2011) 'An evolutionary review of human telomere biology: The thrifty telomere hypothesis and notes on potential adaptive paternal effects', American Journal of Human Biology, Vol 23(2), p 149-167.

  [96] Armanios, M. (2013) 'Telomeres and age-related disease: how telomere biology informs clinical paradigms', The Journal of Clinical Investigation.

  [97] Cawton, R. et al (2003) 'Association between telomere length in blood and mortality in people aged 60 years or older', Research Letters, Vol 361(9355), p 393-395.

  [98] Okuda, K. et al (2002) 'Telomere Length in the Newborn', Pediatric Research, Vol 52, p 377-381.

  [99] Arai, Y. et al (2015) 'Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians', E Bio Medicine, Vol 2(10), p 1549-1558.

  [100] Shampay, J. and Blackburn, EH. (1988) 'Generation of telomere-length heterogeneity in Saccharomyces cerevisiae', PNAS, Vol 85(2), p 534-538.

  [101] Bodnar, A. et al (1998) 'Extension of L
ife-Span by Introduction of Telomerase into Normal Human Cells', Science, Vol 279(5349), p 349-352.

  [102]Flores, I. (2006) 'Telomerase regulation and stem cell behaviour', Current Opinion in Cell Biology, Vol 18(3), p 254-260.

  [103] Zhang, A. (2003) 'Deletion of the Telomerase Reverse Transcriptase Gene and Haploinsufficiency of Telomere Maintenance in Cri du Chat Syndrome', AJHG, Vol 72(4), p 940-948.

  [104] Blasco, MA. (2005) 'Telomeres and human disease: ageing, cancer and beyond', Nature Reviews. Genetics., Vol 6(8), p 611-622.

  [105] Zhang, X. et al (1999) 'Telomere shortening and apoptosis in telomerase-inhibited human tumor cells', Genes & Development, Vol 13, p 2388-2399.

 

‹ Prev