Book Read Free

Metabolic Autophagy

Page 49

by Siim Land


  [106] Richter, T. and Zglinicki, T. (2007) 'A continuous correlation between oxidative stress and telomere shortening in fibroblasts', Experimental Gerontology, Vol 42(11), p 1039-1042.

  [107] Epel, E. et al (2009) 'Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres', Annals of the New York Academy of Sciences, Vol 1172, p 34-53.

  [108] Jacobs, TL. et al (2011) 'Intensive meditation training, immune cell telomerase activity, and psychological mediators', Psychoneuroendocrinology, Vol 36(5), p 664-681.

  [109] Scutte, N.S. and Malouff, J.M. (2014) 'A meta-analytic review of the effects of mindfulness meditation on telomerase activity', Psychoneuroendocrinology, Vol 42, p 45-48.

  [110] Meyer, A. et al (2016) 'Leukocyte telomere length is related to appendicular lean mass: cross-sectional data from the Berlin Aging Study II (BASE-II)', Americal Journal of Clinical Nutrition, Vol 103(1), p 178-183.

  [111] Radak, Z. et al (2008) 'Exercise, oxidative stress and hormesis', Ageing Research Reviews, Vol 7(1), p 34-42.

  [112] Mattson MP (2012) Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metabolism 16: 706-722

  [113] Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R (2010) Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol. 67:41-52.

  [114] Yang JL, Lin YT, Chuang PC, Bohr VA, Mattson MP (2014). BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med. 16:161-74

  [115] Reznick, DN. et al (2004) 'Effect of extrinsic mortality on the evolution of senescence in guppies', Nature, Vol 431(7012), p 1095-1099.

  [116] Rogina, B. et al (2000) 'Extended life-span conferred by cotransporter gene mutations in Drosophila', Science, Vol 290(5499), p 2137-2140.

  [117] Hsin, H. and Kenyon, C. (1999) 'Signals from the reproductive system regulate the lifespan of C. elegans', Nature, Vol 399(6734), p 362-366.

  [118] Brook, MS. et al (2015) 'Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise', Acta Physiologica, Vol 216(1), p 15-41.

  [119] Burgers, AMG. et al (2011) 'Meta-Analysis and Dose-Response Metaregression: Circulating Insulin-Like Growth Factor I (IGF-I) and Mortality', JCEM, Vol 96(9), p 2912-2920.

  [120] Smith TJ (2010) 'Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases?', Pharmacological Reviews, Vol 62(2), p 199-236.

  [121] Puche, J.E. and Castilla-Cortazar, I. (2012) 'Human conditions of insulin-like growth factor-I (IGF-I) deficiency', Journal of Translational Medicine, Vol 10, p 224.

  [122] Owen OE, et al (1969) Liver and kidney metabolism during prolonged starvation. J Clin Invest; Vol 48, p 574-583.

  [123] Eichhorn, G. et al (2011) 'Heterothermy in growing king penguins', Nature Communications, Vol 2, p 435.

  [124] Eble, AS. et al (1983) 'Nonenzymatic glucosylation and glucose-dependent cross-linking of protein', Journal of Biological Chemistry, Vol 258(15), p 9406-9412.

  [125] Vlassara, H. (2001) 'The AGE-receptor in the pathogenesis of diabetic complications', Diabetes Metabolism Research and Reviews, Vol 17(6), p 436-443.

  [126] Gkogkolou, P. and Böhm, M. (2012) 'Advanced glycation end products: Key players in skin aging?', Dermatoendocrinology, Vol 4(3), p 259-270.

  [127] Spindler, SR (2010) 'Biological Effects of Calorie Restriction: Implications for Modification of Human Aging', The Future of Aging, p 367-438.

  [128] Keys A, et al (1950) ‘The Biology of Human Starvation’, University of Minnesota Press, Minneapolis.

  [129] "Men Starve in Minnesota" (July 30, 1945). Life 19(5): 43-46.

  [130] Oswalt, W H. (1976). An Anthropological Analysis of Foodgetting Technology. New York, NY: Wiley.

  [131] Paton DN, and Stockman R (1888-1889) ‘Observations on the metabolism of man during starvation’, Proc R Acad Edinb; pp 121-131.

  [132] Rcbins GN: The fasting man. Br Med J 1890 Jun 21; 1: 1444-1446 9. Benedict FG: A Study of Prolonged Fasting, Publication No. 203. Washington DC, Carnegie Institute, 1915

  [133] Thomson TJ, Runcie J, Miller V: Treatment of obesity by total fasting for up to 249 days. Lancet 1966 Nov 5; 2:992-996

  [134] Stewart WK, and Fleming LW (1973) ‘Features cf a successful therapeutic fast of 382 days' duration’, Postgrad Med J, Vol 49, p 203-209.

  [135] Weir, H.J. et al (2017) 'Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling', Cell Metabolism, Vol 26(6), p 884-896.

  [136] Liang, H. and Ward, WF. (2006) 'PGC-1alpha: a key regulator of energy metabolism', Advances in Physiology Education, Vol 30(4), p 145-151.

  [137] Zong, H. et al (2002) 'AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation', PNAS, Vol 99(25), p 15983-15987.

  [138] Seok, S. et al (2018) 'Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation', JCI.

  [139] Lokireddy, S. et al (2012) 'The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli', Cell Metabolism, Vol 16(5), p 613-624.

  [140] Houtkooper, RH. et al (2012) 'Sirtuins as regulators of metabolism and healthspan', Nat Rev Mol Cell Biol, Vol 13(4), p 225-238.

  [141] Li, P. et al (2017) 'SIRT1 is required for mitochondrial biogenesis reprogramming in hypoxic human pulmonary arteriolar smooth muscle cells', Int J Mol Med, Vol 39(5), p 1127-1136.

  [142] Krishnan, J. et al (2012) 'Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system', Genes Dev, Vol 26(3), p 259-270.

  [143] Bell, EL. and Guarente, L. (2011) 'The SirT3 divining rod points to oxidative stress', Mol Cell, Vol 42(5), p 561-568.

  [144] Gomes, A.P. et al (2014) 'Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging', Cell, Vol 155(7), p 1624-1638.

  [145] Yang, H. et al (2007) 'Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival', Cell, Vol 130(6), p 1095-1107.

  [146] Trafton, A. (2018) 'Study suggests method for boosting growth of blood vessels and muscle', MIT News.

  [147] Fang, E.F. et al (2016) 'NAD+ Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair', Cell Metabolism, Vol 24(4), p 566-581.

  [148] Li, J. et al (2017) 'A conserved NAD+ binding pocket that regulates protein-protein interactions during aging', Science, Vol 355(6331), p 1312-1317.

  [149] Tothova, Z. and Gilliland, DG. (2007) 'FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system', Cell Stem Cell, Vol 1(2), p 140-152.

  [150] Mergenthaler, P. et al (2014) 'Sugar for the brain: the role of glucose in physiological and pathological brain function', Trends Neuroscience, Vol 36(10), p 587-597.

  [151] Mattson, MP. et al (2004) 'BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders', Trends Neuroscience, Vol 27(10), p 589-594.

  [152] Mattson, MP. et al (2003) 'Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms', Journal of Neurochemistry, Vol 84(3), p 417-431.

  [153] Manzanero, S. et al (2014) 'Intermittent fasting attenuates increases in neurogenesis after ischemia and reperfusion and improves recovery', JCBFM, Vol 34(5), p 897-905.

  [154] Redman, LM. et al (2018) 'Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging', Clinical and Translational Report, Vol 27(4), p 805-815.

  [155] Aberg, ND. et al (2006) 'Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain', Scientific World Journal, Vol 18(6), p 53-8
0.

  [156] Lavin DN, et al (2011) 'Fasting induces an anti-inflammatory effect on the neuroimmune system which a high-fat diet prevents', Obesity (Silver Spring), Vol 19(8), p 1586-1594.

  [157] Willeumier, KC. et al (2011) 'Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults', Obesity (Silver Spring), Vol 19(5), p 1095-1097.

  [158]https://www.rose-hulman.edu/~brandt/Chem330/EndocrineNotes/Chapter_5_Glucose.pdf

  [159] Guzman, M. and Blazquez, C. (2004) 'Ketone body synthesis in the brain: possible neuroprotective effects', Prostaglandins, Leukotrienes, and Essential Fatty Acids, Vol 70(3), p 287-292.

  [160] Baba, H. et al (1995) 'Glycerol gluconeogenesis in fasting humans', Nutrition, Vol 11(2), p 149-153.

  [161] Wyass, T.M. et al (2011) 'In Vivo Evidence for Lactate as a Neuronal Energy Source', Journal of Neruoscience, Vol 31(20), p 7477-7485.

  [162] Ivanov, A. and Zilberter, Y. (2011) 'Critical State of Energy Metabolism in Brain Slices: The Principal Role of Oxygen Delivery and Energy Substrates in Shaping Neuronal Activity', Frontiers in Neuroenergetics, Vol 3, p 9.

  [163] de la Monte, S.M. and Wands, JR. (2008) 'Alzheimer's Disease Is Type 3 Diabetes–Evidence Reviewed', Journal of Diabetes Science and Technology, Vol 2(6), p 1101-1113.

  [164] Penn Medicine News (2012) 'Brain Insulin Resistance Contributes to Cognitive Decline in Alzheimer's Disease', Accessed: https://www.pennmedicine.org/news/news-releases/2012/march/brain-insulin-resistance-contr

  [165] Arumugam, TV. et al (2010) 'Age and energy intake interact to modify cell stress pathways and stroke outcome', Annals of Neurology, Vol 67(1), p 41-52.

  [166] Yale University (2015) 'Anti-inflammatory mechanism of dieting and fasting revealed', Accessed: https://www.sciencedaily.com/releases/2015/02/150216131146.htm

  [167] Stafstrom, C.E. and Rho, JM. (2012) 'The ketogenic diet as a treatment paradigm for diverse neurological disorders', Frontiers in Pharmacology.

  [168] Green, MW. et al (1995) 'Lack of effect of short-term fasting on cognitive function', Journal of Psychiatric Research, Vol 29(3), p 245-253.

  [169] Fontana, L. et al (2010) 'Extending healthy life span--from yeast to humans', Science, Vol 328(5976), p 321-326.

  [170] Cheng, CW. et al (2014) 'Prolonged Fasting reduces IGF-1/PKA to promote hematopoietic stem cell-based regeneration and reverse immunosuppression', Cell Stem Cell, Vol 14(6), p 810-823.

  [171] Wei, M. et al (2017) 'Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease', Sci Transl Med, Vol 9 (377).

  [172] Clemente, J.C. et al (2012) 'The Impact of the Gut Microbiota on Human Health: An Integrative View', Cell, Vol 148(6), p 1258-1270.

  [173] Conlon, M.A. and Bird, A.R. (2015) 'The Impact of Diet and Lifestyle on Gut Microbiota and Human Health', Nutrients, Vol 7(1), p 17-44.

  [174] Regan, JC. et al (2016) 'Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction', eLife.

  [175] Catterson, J. et al (2018) 'Short-Term, Intermittent Fasting Induces Long-Lasting Gut Health and TOR-Independent Lifespan Extension', Current Biology, Vol 28(11), p 1714-1724.

  [176] Godinez-Victoria, M. et al (2014) 'Intermittent Fasting Promotes Bacterial Clearance and Intestinal IgA Production in Salmonella typhimurium‐Infected Mice', Experimental Immunology, Vol 79(5), p 315-324.

  [177] Lara-Padilla, E. et al (2015) 'Intermittent fasting modulates IgA levels in the small intestine under intense stress: A mouse model', Vol 285, p 22-30.

  [178] Shen, R. et al (2016) 'Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance', PNAS, Vol 113(23), p E3307-E3314.

  [179] Li, G. et al (2017) 'Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota', Vol 26(4), p 672-685.

  [180] Moreno-Navarette, J.M. et al (2017) 'Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in Morbid Obesity', Molecular Nutrition and Food Research, Vol 62(3).

  [181] Kivelä, R. and Alitalo, K. (2017) 'White adipose tissue coloring by intermittent fasting', Cell Research, Vol 27, p 1300-1301.

  [182] Ley, RE. et al (2006) 'Microbial ecology: human gut microbes associated with obesity', Nature, Vol 444(7122), p 1022-1023.

  [183] Zhang, C. et al (2013) 'Structural modulation of gut microbiota in life-long calorie-restricted mice', Nature Communications, Vol 4, 2163.

  [184] Deloose, E. et al (2012) 'The migrating motor complex: control mechanisms and its role in health and disease', Nat Rev Gastroentology & Hepatology, Vol 9(5), p 271-285.

  [185] Chaix, A. and Zarrinpar, A. (2015) 'The effects of time-restricted feeding on lipid metabolism and adiposity', Adipocyte, Vol 4(4), p 319-324.

  [186]Kanazawa, M. and Fukudo, S. (2006) 'Effects of fasting therapy on irritable bowel syndrome', International Journal of Behavioral Medicine, Vol 13(3), p 214-220.

  [187] Mihaylova, M. et al (2018) 'Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging', Cell Stem Cell, Vol 22(5), p 769-778.

  [188] Paulose, JK. et al (2016) 'Human Gut Bacteria Are Sensitive to Melatonin and Express Endogenous Circadian Rhythmicity', PLOS One, Vol 11(1).

  [189] Trinder, M. et al (2015) 'Bacteria Need Sleep Too?: Microbiome Circadian Rhythmicity, Metabolic Disease, and Beyond', University of Toronto Medical Journal, Vol 92(3).

  [190] David, LA. et al (2014) 'Diet rapidly and reproducibly alters the human gut microbiome', Nature, Vol 505(7484), p 559-563.

  [191] Karasov, WH. et al (2004) 'Anatomical and histological changes in the alimentary tract of migrating blackcaps (Sylvia atricapilla): a comparison among fed, fasted, food-restricted, and refed birds', Physiol Biochem Zool, Vol 77(1), p 149-160.

  [192] Cignarella, F. et al (2018) 'Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota', Cell Metabolism, Vol 27(6), p 1222-1235.

  [193] Zarrinpar, A. et al (2014) 'Diet and feeding pattern affect the diurnal dynamics of the gut microbiome', Cell Metabolism, Vol 20(6), p 1006-1017.

  [194] Zarrinpar, A. et al (2014) 'Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome', Cell Metabolism, Vol 20(6), p 1006-1017.

  [195] Thaiss, C.A. et al (2014) 'A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host', Gut Microbes, Vol 6(2), p 137-142.

  [196] Patterson, R. and Sears, D. (2017) 'Metabolic Effects of Intermittent Fasting', Annual Review of Nutrition, Vol 37, p 371-393.

  [197] Rhee, S.H. et al (2009) 'Principles and clinical implications of the brain–gut–enteric microbiota axis', Nature Reviews. Gastroenterology & Hepatology, Vol 6, p 306-314.

  [198] Wang, Y. and Kasper, L.H. (2014) 'The role of microbiome in central nervous system disorders', Brain Behav Immun, Vol 38, p 1-12.

  [199] Carabotti, M. et al (2015) 'The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems', Annals & Gastroenterology, Vol 28(2), p 203-209.

  [200] Tunstall RJ, et al. (2002) ‘Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscle’, Biochemical and Biophysical Research Communications, Vol 294, p 301-308.

  [201] Mansell, PI. et al (1990) 'Enhanced thermogenic response to epinephrine after 48-h starvation in humans', Am J Physiol, Vol 258 (1 pt 2), R87-93.

  [202] Heilbronn, LK. et al (2005) 'Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism', Am J Clin Nutr, Vol 81(1), p 69-73.

  [203] Ho, K.Y. et al (1988) 'Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man', J Clin Invest, Vol 81(4), p 968-975.

  [204] Merimee TJ, and Fineberg SE (1974) ‘Growth hormone secretion in starvation’, A reassessment. J Clin Endocrinol Me
tab, Vol 39, p 385-386.

  [205] Palmblad J, Levi L, Burger A, et al (1977) ‘Effects of total energy withdrawal (fasting) on the levels of growth hormone, thyrotropin, cortisol, adrenaline, noradrenaline, T4, T3, and rT3 in healthy males’. Acta Med Scand, Vol 201, p 15-22.

  [206] Roth J, Glick SM, Yalow RS, et al (1963) ‘Secretion of human growth hormone: Physiologic and experimental modification’, Metabolism, Vol 12, p 577-579.

  Beck P, Koumans JT, Winterling CA, et al (1964), Studies of insulin and growth hormone secretion in human obesity’. J Lab Clin Med, Vol 64, p 654-667.

 

‹ Prev