Book Read Free

The Design of Everyday Things

Page 13

by Don Norman


  Want a simpler way? Try this approximation—you can do it in your head, there is no need for paper or pencil:

  °C = (°F–30) / 2

  Plug in 55 for °F, and ºC = (55–30) / 2 = 12.5º. Is the equation an exact conversion? No, but the approximate answer of 12.5 is close enough to the correct value of 12.8. After all, I simply wanted to know whether I should wear a sweater. Anything within 5ºF of the real value would work for this purpose.

  Approximate answers are often good enough, even if technically wrong. This simple approximation method for temperature conversion is “good enough” for temperatures in the normal range of interior and outside temperatures: it is within 3ºF (or 1.7ºC) in the range of –5º to 25ºC (20º to 80ºF). It gets further off at lower or higher temperatures, but for everyday use, it is wonderful. Approximations are good enough for practical use.

  EXAMPLE 2: A MODEL OF SHORT-TERM MEMORY

  Here is an approximate model for STM:

  There are five memory slots in short-term memory. Each time a new item is added, it occupies a slot, knocking out whatever was there beforehand.

  Is this model true? No, not a single memory researcher in the entire world believes this to be an accurate model of STM. But it is good enough for applications. Make use of this model, and your designs will be more usable.

  EXAMPLE 3: STEERING A MOTORCYCLE

  In the preceding section, we learned how Professor Sayeki mapped the turning directions of his motorcycle to his turn signals, enabling him to remember their correct usage. But there, I also pointed out that the conceptual model was wrong.

  Why is the conceptual model for steering a motorcycle useful even though it is wrong? Steering a motorcycle is counterintuitive: to turn to the left, the handlebars must first be turned to the right. This is called countersteering, and it violates most people’s conceptual models. Why is this true? Shouldn’t we rotate the handlebars left to turn the bike left? The most important component of turning a two-wheeled vehicle is lean: when the bike is turning left, the rider is leaning to the left. Countersteering causes the rider to lean properly: when the handlebars are turned to the right, the resulting forces upon the rider cause the body to lean left. This weight shift then causes the bike to turn left.

  Experienced riders often do the correct operations subconsciously, unaware that they start a turn by rotating the handlebars opposite from the intended direction, thus violating their own conceptual models. Motorcycle training courses have to conduct special exercises to convince riders that this is what they are doing.

  You can test this counterintuitive concept on a bicycle or motorcycle by getting up to a comfortable speed, placing the palm of the hand on the end of the left handlebar, and gently pushing it forward. The handlebars and front wheel will turn to the right and the body will lean to the left, resulting in the bike—and the handlebars— turning to the left.

  Professor Sayeki was fully aware of this contradiction between his mental scheme and reality, but he wanted his memory aid to match his conceptual model. Conceptual models are powerful explanatory devices, useful in a variety of circumstances. They do not have to be accurate as long as they lead to the correct behavior in the desired situation.

  EXAMPLE 4: “GOOD ENOUGH” ARITHMETIC

  Most of us can’t multiply two large numbers in our head: we forget where we are along the way. Memory experts can multiply two large numbers quickly and effortlessly in their heads, amazing audiences with their skills. Moreover, the numbers come out left to right, the way we use them, not right to left, as we write them while laboriously using pencil and paper to compute the answers. These experts use special techniques that minimize the load on working memory, but they do so at the cost of having to learn numerous special methods for different ranges and forms of problems.

  Isn’t this something we should all learn? Why aren’t school systems teaching this? My answer is simple: Why bother? I can estimate the answer in my head with reasonable accuracy, often good enough for the purpose. When I need precision and accuracy, well, that’s what calculators are for.

  Remember my earlier example, to multiply 27 times 293 in your head? Why would anyone need to know the precise answer? an approximate answer is good enough, and pretty easy to get. Change 27 to 30, and 293 to 300: 30 × 300 = 9,000 (3 × 3 = 9, and add back the three zeros). The accurate answer is 7,911, so the estimate of 9,000 is only 14 percent too large. In many instances, this is good enough. Want a bit more accuracy? We changed 27 to 30 to make the multiplication easier. That’s 3 too large. So subtract 3 × 300 from the answer (9,000 – 900). Now we get 8,100, which is accurate within 2 percent.

  It is rare that we need to know the answers to complex arithmetic problems with great precision: almost always, a rough estimate is good enough. When precision is required, use a calculator. That’s what machines are good for: providing great precision. For most purposes, estimates are good enough. Machines should focus on solving arithmetic problems. People should focus on higher-level issues, such as the reason the answer was needed.

  Unless it is your ambition to become a nightclub performer and amaze people with great skills of memory, here is a simpler way to dramatically enhance both memory and accuracy: write things down. Writing is a powerful technology: why not use it? Use a pad of paper, or the back of your hand. Write it or type it. Use a phone or a computer. Dictate it. This is what technology is for.

  The unaided mind is surprisingly limited. It is things that make us smart. Take advantage of them.

  SCIENTIFIC THEORY VERSUS EVERYDAY PRACTICE

  Science strives for truth. As a result, scientists are always debating, arguing, and disagreeing with one another. The scientific method is one of debate and conflict. Only ideas that have passed through the critical examination of multiple other scientists survive. This continual disagreement often seems strange to the nonscientist, for it appears that scientists don’t know anything. Select almost any topic, and you will discover that scientists who work in that area are continually disagreeing.

  But the disagreements are illusory. That is, most scientists usually agree about the broad details: their disagreements are often about tiny details that are important for distinguishing between two competing theories, but that might have very little impact in the real world of practice and applications.

  In the real, practical world, we don’t need absolute truth: approximate models work just fine. Professor Sayeki’s simplified conceptual model of steering his motorcycle enabled him to remember which way to move the switches for his turn signals; the simplified equation for temperature conversion and the simplified model of approximate arithmetic enabled “good enough” answers in the head. The simplified model of STM provides useful design guidance, even if it is scientifically wrong. Each of these approximations is wrong, yet all are valuable in minimizing thought, resulting in quick, easy results whose accuracy is “good enough.”

  Knowledge in the Head

  Knowledge in the world, external knowledge, is a valuable tool for remembering, but only if it is available at the right place, at the right time, in the appropriate situation. Otherwise, we must use knowledge in the head, in the mind. A folk saying captures this situation well: “Out of sight, out of mind.” Effective memory uses all the clues available: knowledge in the world and in the head, combining world and mind. We have already seen how the combination allows us to function quite well in the world even though either source of knowledge, by itself, is insufficient.

  HOW PILOTS REMEMBER WHAT AIR-TRAFFIC CONTROL TELLS THEM

  Airplane pilots have to listen to commands from air-traffic control delivered at a rapid pace, and then respond accurately. Their lives depend upon being able to follow the instructions accurately. One website, discussing the problem, gave this example of instructions to a pilot about to take off for a flight:

  Frasca 141, cleared to Mesquite airport, via turn left heading 090, radar vectors to Mesquite airport. Climb and maintain 2,000. Expect 3,000 10 minu
tes after departure. Departure frequency 124.3, squawk 5270.

  (Typical Air traffic control sequence, usually spoken extremely rapidly. Text from “ATC Phraseology,” on numerous websites, with no credit for originator.)

  “How can we remember all that,” asked one novice pilot, “when we are trying to focus on taking off?” Good question. Taking off is a busy, dangerous procedure with a lot going on, both inside and outside the airplane. How do pilots remember? Do they have superior memories?

  Pilots use three major techniques:

  1.They write down the critical information.

  2.They enter it into their equipment as it is told to them, so minimal memory is required.

  3.They remember some of it as meaningful phrases.

  Although to the outside observer, all the instructions and numbers seem random and confusing, to the pilots they are familiar names, familiar numbers. As one respondent pointed out, those are common numbers and a familiar pattern for a takeoff. “Frasca 141” is the name of the airplane, announcing the intended recipient of these instructions. The first critical item to remember is to turn left to a compass direction of 090, then climb to an altitude of 2,000 feet. Write those two numbers down. Enter the radio frequency 124.3 into the radio as you hear it—but most of the time this frequency is known in advance, so the radio is probably already set to it. All you have to do is look at it and see that it is set properly. Similarly, setting the “squawk box to 5270” is the special code the airplane sends whenever it is hit by a radar signal, identifying the airplane to the air-traffic controllers. Write it down, or set it into the equipment as it is being said. As for the one remaining item, “Expect 3,000 10 minutes after departure,” nothing need be done. This is just reassurance that in ten minutes, Frasca 141 will probably be advised to climb to 3,000 feet, but if so, there will be a new command to do so.

  How do pilots remember? They transform the new knowledge they have just received into memory in the world, sometimes by writing, sometimes by using the airplane’s equipment.

  The design implication? The easier it is to enter the information into the relevant equipment as it is heard, the less chance of memory error. The air-traffic control system is evolving to help. The instructions from the air-traffic controllers will be sent digitally, so that they can remain displayed on a screen as long as the pilot wishes. The digital transmission also makes it easy for automated equipment to set itself to the correct parameters. Digital transmission of the controller’s commands has some disadvantages, however. Other aircraft will not hear the commands, which reduces pilot awareness of what all the airplanes in the vicinity are going to do. Researchers in air-traffic control and aviation safety are looking into these issues. Yes, it’s a design issue.

  REMINDING: PROSPECTIVE MEMORY

  The phrases prospective memory or memory for the future might sound counterintuitive, or perhaps like the title of a science-fiction novel, but to memory researchers, the first phrase simply denotes the task of remembering to do some activity at a future time. The second phrase denotes planning abilities, the ability to imagine future scenarios. Both are closely related.

  Consider reminding. Suppose you have promised to meet some friends at a local café on Wednesday at three thirty in the afternoon. The knowledge is in your head, but how are you going to remember it at the proper time? You need to be reminded. This is a clear instance of prospective memory, but your ability to provide the required cues involves some aspect of memory for the future as well. Where will you be Wednesday just before the planned meeting? What can you think of now that will help you remember then?

  There are many strategies for reminding. One is simply to keep the knowledge in your head, trusting yourself to recall it at the critical time. If the event is important enough, you will have no problem remembering it. It would be quite strange to have to set a calendar alert to remind yourself, “Getting married at 3 PM.”

  Relying upon memory in the head is not a good technique for commonplace events. Ever forget a meeting with friends? It happens a lot. Not only that, but even if you might remember the appointment, will you remember all the details, such as that you intended to loan a book to one of them? Going shopping, you may remember to stop at the store on the way home, but will you remember all the items you were supposed to buy?

  If the event is not personally important and several days away, it is wise to transfer some of the burden to the world: notes, calendar reminders, special cell phone or computer reminding services. You can ask friends to remind you. Those of us with assistants put the burden on them. They, in turn, write notes, enter events on calendars, or set alarms on their computer systems.

  Why burden other people when we can put the burden on the thing itself? Do I want to remember to take a book to a colleague? I put the book someplace where I cannot fail to see it when I leave the house. A good spot is against the front door so that I can’t leave without tripping over it. Or I can put my car keys on it, so when I leave, I am reminded. Even if I forget, I can’t drive away without the keys. (Better yet, put the keys under the book, else I might still forget the book.)

  There are two different aspects to a reminder: the signal and the message. Just as in doing an action we can distinguish between knowing what can be done and knowing how to do it, in reminding we must distinguish between the signal—knowing that something is to be remembered, and the message—remembering the information itself. Most popular reminding methods typically provide only one or the other of these two critical aspects. The famous “tie a string around your finger” reminder provides only the signal. It gives no hint of what is to be remembered. Writing a note to yourself provides only the message; it doesn’t remind you ever to look at it. The ideal reminder has to have both components: the signal that something is to be remembered, and then the message of what it is.

  The signal that something is to be remembered can be a sufficient memory cue if it occurs at the correct time and place. Being reminded too early or too late is just as useless as having no reminder. But if the reminder comes at the correct time or location, the environmental cue can suffice to provide enough knowledge to aid retrieval of the to-be-remembered item. Time-based reminders can be effective: the bing of my cell phone reminds me of the next appointment. Location-based reminders can be effective in giving the cue at the precise place where it will be needed. All the knowledge needed can reside in the world, in our technology.

  The need for timely reminders has created loads of products that make it easier to put the knowledge in the world—timers, diaries, calendars. The need for electronic reminders is well known, as the proliferation of apps for smart phones, tablets, and other portable devices attests. Yet surprisingly in this era of screen-based devices, paper tools are still enormously popular and effective, as the number of paper-based diaries and reminders indicates.

  The sheer number of different reminder methods also indicates that there is indeed a great need for assistance in remembering, but that none of the many schemes and devices is completely satisfactory. After all, if any one of them was, then we wouldn’t need so many. The less effective ones would disappear and new schemes would not continually be invented.

  The Tradeoff Between Knowledge in the World and in the Head

  Knowledge in the world and knowledge in the head are both essential in our daily functioning. But to some extent we can choose to lean more heavily on one or the other. That choice requires a tradeoff—gaining the advantages of knowledge in the world means losing the advantages of knowledge in the head (Table 3.1).

  Knowledge in the world acts as its own reminder. It can help us recover structures that we otherwise would forget. Knowledge in the head is efficient: no search and interpretation of the environment is required. The tradeoff is that to use our knowledge in the head, we have to be able to store and retrieve it, which might require considerable amounts of learning. Knowledge in the world requires no learning, but can be more difficult to use. And it relies heavily upon t
he continued physical presence of the knowledge; change the environment and the knowledge might be lost. Performance relies upon the physical stability of the task environment.

  TABLE 3.1.Tradeoffs Between Knowledge in the World and in the Head

  Knowledge in the World

  Knowledge in the Head

  Information is readily and easily available whenever perceivable.

  Material in working memory is readily available. Otherwise considerable search and effort may be required.

  Interpretation substitutes for learning. How easy it is to interpret knowledge in the world depends upon the skill of the designer.

  Requires learning, which can be considerable. Learning is made easier if there is meaning or structure to the material or if there is a good conceptual model.

  Slowed by the need to find and interpret the knowledge.

  Can be efficient, especially if so well-learned that it is automated.

  Ease of use at first encounter is high.

  Ease of use at first encounter is low.

  Can be ugly and inelegant, especially if there is a need to maintain a lot of knowledge. This can lead to clutter. Here is where the skills of the graphics and industrial designer play major roles.

  Nothing needs to be visible, which gives more freedom to the designer. This leads to cleaner, more pleasing appearance—at the cost of ease of use at first encounter, learning, and remembering.

  As we just discussed, reminders provide a good example of the relative tradeoffs between knowledge in the world versus in the head. Knowledge in the world is accessible. It is self-reminding. It is always there, waiting to be seen, waiting to be used. That is why we structure our offices and our places of work so carefully. We put piles of papers where they can be seen, or if we like a clean desk, we put them in standardized locations and teach ourselves (knowledge in the head) to look in these standard places routinely. We use clocks and calendars and notes. Knowledge in the mind is ephemeral: here now, gone later. We can’t count on something being present in mind at any particular time, unless it is triggered by some external event or unless we deliberately keep it in mind through constant repetition (which then prevents us from having other conscious thoughts). Out of sight, out of mind.

 

‹ Prev