Book Read Free

The Design of Everyday Things

Page 23

by Don Norman


  Memory-lapse mistakes are especially difficult to detect. Just as with a memory-lapse slip the absence of something that should have been done is always more difficult to detect than the presence of something that should not have been done. The difference between memory-lapse slips and mistakes is that, in the first case, a single component of a plan is skipped, whereas in the second, the entire plan is forgotten. Which is easier to discover? At this point I must retreat to the standard answer science likes to give to questions of this sort: “It all depends.”

  EXPLAINING AWAY MISTAKES

  Mistakes can take a long time to be discovered. Hear a noise that sounds like a pistol shot and think: “Must be a car’s exhaust backfiring.” Hear someone yell outside and think: “Why can’t my neighbors be quiet?” Are we correct in dismissing these incidents? Most of the time we are, but when we’re not, our explanations can be difficult to justify.

  Explaining away errors is a common problem in commercial accidents. Most major accidents are preceded by warning signs: equipment malfunctions or unusual events. Often, there is a series of apparently unrelated breakdowns and errors that culminate in major disaster. Why didn’t anyone notice? Because no single incident appeared to be serious. Often, the people involved noted each problem but discounted it, finding a logical explanation for the otherwise deviant observation.

  THE CASE OF THE WRONG TURN ON A HIGHWAY

  I’ve misinterpreted highway signs, as I’m sure most drivers have. My family was traveling from San Diego to Mammoth Lakes, California, a ski area about 400 miles north. As we drove, we noticed more and more signs advertising the hotels and gambling casinos of Las Vegas, Nevada. “Strange,” we said, “Las Vegas always did advertise a long way off—there is even a billboard in San Diego—but this seems excessive, advertising on the road to Mammoth.” We stopped for gasoline and continued on our journey. Only later, when we tried to find a place to eat supper, did we discover that we had missed a turn nearly two hours earlier, before we had stopped for gasoline, and that we were actually on the road to Las Vegas, not the road to Mammoth. We had to backtrack the entire two-hour segment, wasting four hours of driving. It’s humorous now; it wasn’t then.

  Once people find an explanation for an apparent anomaly, they tend to believe they can now discount it. But explanations are based on analogy with past experiences, experiences that may not apply to the current situation. In the driving story, the prevalence of billboards for Las Vegas was a signal we should have heeded, but it seemed easily explained. Our experience is typical: some major industrial incidents have resulted from false explanations of anomalous events. But do note: usually these apparent anomalies should be ignored. Most of the time, the explanation for their presence is correct. Distinguishing a true anomaly from an apparent one is difficult.

  IN HINDSIGHT, EVENTS SEEM LOGICAL

  The contrast in our understanding before and after an event can be dramatic. The psychologist Baruch Fischhoff has studied explanations given in hindsight, where events seem completely obvious and predictable after the fact but completely unpredictable beforehand.

  Fischhoff presented people with a number of situations and asked them to predict what would happen: they were correct only at the chance level. When the actual outcome was not known by the people being studied, few predicted the actual outcome. He then presented the same situations along with the actual outcomes to another group of people, asking them to state how likely each outcome was: when the actual outcome was known, it appeared to be plausible and likely and other outcomes appeared unlikely.

  Hindsight makes events seem obvious and predictable. Foresight is difficult. During an incident, there are never clear clues. Many things are happening at once: workload is high, emotions and stress levels are high. Many things that are happening will turn out to be irrelevant. Things that appear irrelevant will turn out to be critical. The accident investigators, working with hindsight, knowing what really happened, will focus on the relevant information and ignore the irrelevant. But at the time the events were happening, the operators did not have information that allowed them to distinguish one from the other.

  This is why the best accident analyses can take a long time to do. The investigators have to imagine themselves in the shoes of the people who were involved and consider all the information, all the training, and what the history of similar past events would have taught the operators. So, the next time a major accident occurs, ignore the initial reports from journalists, politicians, and executives who don’t have any substantive information but feel compelled to provide statements anyway. Wait until the official reports come from trusted sources. Unfortunately, this could be months or years after the accident, and the public usually wants answers immediately, even if those answers are wrong. Moreover, when the full story finally appears, newspapers will no longer consider it news, so they won’t report it. You will have to search for the official report. In the United States, the National Transportation Safety Board (NTSB) can be trusted. NTSB conducts careful investigations of all major aviation, automobile and truck, train, ship, and pipeline incidents. (Pipelines? Sure: pipelines transport coal, gas, and oil.)

  Designing for Error

  It is relatively easy to design for the situation where everything goes well, where people use the device in the way that was intended, and no unforeseen events occur. The tricky part is to design for when things go wrong.

  Consider a conversation between two people. Are errors made? Yes, but they are not treated as such. If a person says something that is not understandable, we ask for clarification. If a person says something that we believe to be false, we question and debate. We don’t issue a warning signal. We don’t beep. We don’t give error messages. We ask for more information and engage in mutual dialogue to reach an understanding. In normal conversations between two friends, misstatements are taken as normal, as approximations to what was really meant. Grammatical errors, self-corrections, and restarted phrases are ignored. In fact, they are usually not even detected because we concentrate upon the intended meaning, not the surface features.

  Machines are not intelligent enough to determine the meaning of our actions, but even so, they are far less intelligent than they could be. With our products, if we do something inappropriate, if the action fits the proper format for a command, the product does it, even if it is outrageously dangerous. This has led to tragic accidents, especially in health care, where inappropriate design of infusion pumps and X-ray machines allowed extreme overdoses of medication or radiation to be administered to patients, leading to their deaths. In financial institutions, simple keyboard errors have led to huge financial transactions, far beyond normal limits. Even simple checks for reasonableness would have stopped all of these errors. (This is discussed at the end of the chapter under the heading “Sensibility Checks.”)

  Many systems compound the problem by making it easy to err but difficult or impossible to discover error or to recover from it. It should not be possible for one simple error to cause widespread damage. Here is what should be done:

  •Understand the causes of error and design to minimize those causes.

  •Do sensibility checks. Does the action pass the “common sense” test?

  •Make it possible to reverse actions—to “undo” them—or make it harder to do what cannot be reversed.

  •Make it easier for people to discover the errors that do occur, and make them easier to correct.

  •Don’t treat the action as an error; rather, try to help the person complete the action properly. Think of the action as an approximation to what is desired.

  As this chapter demonstrates, we know a lot about errors. Thus, novices are more likely to make mistakes than slips, whereas experts are more likely to make slips. Mistakes often arise from ambiguous or unclear information about the current state of a system, the lack of a good conceptual model, and inappropriate procedures. Recall that most mistakes result from erroneous choice of goal or plan or erroneous eval
uation and interpretation. All of these come about through poor information provided by the system about the choice of goals and the means to accomplish them (plans), and poor-quality feedback about what has actually happened.

  A major source of error, especially memory-lapse errors, is interruption. When an activity is interrupted by some other event, the cost of the interruption is far greater than the loss of the time required to deal with the interruption: it is also the cost of resuming the interrupted activity. To resume, it is necessary to remember precisely the previous state of the activity: what the goal was, where one was in the action cycle, and the relevant state of the system. Most systems make it difficult to resume after an interruption. Most discard critical information that is needed by the user to remember the numerous small decisions that had been made, the things that were in the person’s short-term memory, to say nothing of the current state of the system. What still needs to be done? Maybe I was finished? It is no wonder that many slips and mistakes are the result of interruptions.

  Multitasking, whereby we deliberately do several tasks simultaneously, erroneously appears to be an efficient way of getting a lot done. It is much beloved by teenagers and busy workers, but in fact, all the evidence points to severe degradation of performance, increased errors, and a general lack of both quality and efficiency. Doing two tasks at once takes longer than the sum of the times it would take to do each alone. Even as simple and common a task as talking on a hands-free cell phone while driving leads to serious degradation of driving skills. One study even showed that cell phone usage during walking led to serious deficits: “Cell phone users walked more slowly, changed directions more frequently, and were less likely to acknowledge other people than individuals in the other conditions. In the second study, we found that cell phone users were less likely to notice an unusual activity along their walking route (a unicycling clown)” (Hyman, Boss, Wise, McKenzie, & Caggiano, 2010).

  A large percentage of medical errors are due to interruptions. In aviation, where interruptions were also determined to be a major problem during the critical phases of flying—landing and takeoff—the US Federal Aviation Authority (FAA) requires what it calls a “Sterile Cockpit Configuration,” whereby pilots are not allowed to discuss any topic not directly related to the control of the airplane during these critical periods. In addition, the flight attendants are not permitted to talk to the pilots during these phases (which has at times led to the opposite error—failure to inform the pilots of emergency situations).

  Establishing similar sterile periods would be of great benefit to many professions, including medicine and other safety-critical operations. My wife and I follow this convention in driving: when the driver is entering or leaving a high-speed highway, conversation ceases until the transition has been completed. Interruptions and distractions lead to errors, both mistakes and slips.

  Warning signals are usually not the answer. Consider the control room of a nuclear power plant, the cockpit of a commercial aircraft, or the operating room of a hospital. Each has a large number of different instruments, gauges, and controls, all with signals that tend to sound similar because they all use simple tone generators to beep their warnings. There is no coordination among the instruments, which means that in major emergencies, they all sound at once. Most can be ignored anyway because they tell the operator about something that is already known. Each competes with the others to be heard, interfering with efforts to address the problem.

  Unnecessary, annoying alarms occur in numerous situations. How do people cope? By disconnecting warning signals, taping over warning lights (or removing the bulbs), silencing bells, and basically getting rid of all the safety warnings. The problem comes after such alarms are disabled, either when people forget to restore the warning systems (there are those memory-lapse slips again), or if a different incident happens while the alarms are disconnected. At that point, nobody notices. Warnings and safety methods must be used with care and intelligence, taking into account the tradeoffs for the people who are affected.

  The design of warning signals is surprisingly complex. They have to be loud or bright enough to be noticed, but not so loud or bright that they become annoying distractions. The signal has to both attract attention (act as a signifier of critical information) and also deliver information about the nature of the event that is being signified. The various instruments need to have a coordinated response, which means that there must be international standards and collaboration among the many design teams from different, often competing, companies. Although considerable research has been directed toward this problem, including the development of national standards for alarm management systems, the problem still remains in many situations.

  More and more of our machines present information through speech. But like all approaches, this has both strengths and weaknesses. It allows for precise information to be conveyed, especially when the person’s visual attention is directed elsewhere. But if several speech warnings operate at the same time, or if the environment is noisy, speech warnings may not be understood. Or if conversations among the users or operators are necessary, speech warnings will interfere. Speech warning signals can be effective, but only if used intelligently.

  DESIGN LESSONS FROM THE STUDY OF ERRORS

  Several design lessons can be drawn from the study of errors, one for preventing errors before they occur and one for detecting and correcting them when they do occur. In general, the solutions follow directly from the preceding analyses.

  ADDING CONSTRAINTS TO BLOCK ERRORS

  Prevention often involves adding specific constraints to actions. In the physical world, this can be done through clever use of shape and size. For example, in automobiles, a variety of fluids are required for safe operation and maintenance: engine oil, transmission oil, brake fluid, windshield washer solution, radiator coolant, battery water, and gasoline. Putting the wrong fluid into a reservoir could lead to serious damage or even an accident. Automobile manufacturers try to minimize these errors by segregating the filling points, thereby reducing description-similarity errors. When the filling points for fluids that should be added only occasionally or by qualified mechanics are located separately from those for fluids used more frequently, the average motorist is unlikely to use the incorrect filling points. Errors in adding fluids to the wrong container can be minimized by making the openings have different sizes and shapes, providing physical constraints against inappropriate filling. Different fluids often have different colors so that they can be distinguished. All these are excellent ways to minimize errors. Similar techniques are in widespread use in hospitals and industry. All of these are intelligent applications of constraints, forcing functions, and poka-yoke.

  Electronic systems have a wide range of methods that could be used to reduce error. One is to segregate controls, so that easily confused controls are located far from one another. Another is to use separate modules, so that any control not directly relevant to the current operation is not visible on the screen, but requires extra effort to get to.

  UNDO

  Perhaps the most powerful tool to minimize the impact of errors is the Undo command in modern electronic systems, reversing the operations performed by the previous command, wherever possible. The best systems have multiple levels of undoing, so it is possible to undo an entire sequence of actions.

  Obviously, undoing is not always possible. Sometimes, it is only effective if done immediately after the action. Still, it is a powerful tool to minimize the impact of error. It is still amazing to me that many electronic and computer-based systems fail to provide a means to undo even where it is clearly possible and desirable.

  CONFIRMATION AND ERROR MESSAGES

  Many systems try to prevent errors by requiring confirmation before a command will be executed, especially when the action will destroy something of importance. But these requests are usually ill-timed because after requesting an operation, people are usually certain they want it done. Hence the standard jo
ke about such warnings:

  Person: Delete “my most important file.”

  System: Do you want to delete “my most important file”?

  Person: Yes.

  System: Are you certain?

  Person: Yes!

  System “My most favorite file” has been deleted.

  Person: Oh. Damn.

  The request for confirmation seems like an irritant rather than an essential safety check because the person tends to focus upon the action rather than the object that is being acted upon. A better check would be a prominent display of both the action to be taken and the object, perhaps with the choice of “cancel” or “do it.” The important point is making salient what the implications of the action are. Of course, it is because of errors of this sort that the Undo command is so important. With traditional graphical user interfaces on computers, not only is Undo a standard command, but when files are “deleted,” they are actually simply moved from sight and stored in the file folder named “Trash,” so that in the above example, the person could open the Trash and retrieve the erroneously deleted file.

  Confirmations have different implications for slips and mistakes. When I am writing, I use two very large displays and a powerful computer. I might have seven to ten applications running simultaneously. I have sometimes had as many as forty open windows. Suppose I activate the command that closes one of the windows, which triggers a confirmatory message: did I wish to close the window? How I deal with this depends upon why I requested that the window be closed. If it was a slip, the confirmation required will be useful. If it was by mistake, I am apt to ignore it. Consider these two examples:

 

‹ Prev