Book Read Free

Inventing Temperature

Page 40

by Hasok Chang


  Keywords: complementary science, history, philosophy of science

  Hasok Chang

  Criticism is the lifeblood of all rational thought.

  Karl Popper, "Replies to My Critics," 1974

  To turn Sir Karl's view on its head, it is precisely the abandonment of critical discourse that marks the transition to a science.

  Thomas S. Kuhn, "Logic of Discovery or Psychology of Research?" 1970

  This book has been an attempt to open up a new way of improving our knowledge of nature. If I have been successful in my aim, the studies contained in the preceding chapters of this book will defy classification along traditional disciplinary lines: they are at once historical, philosophical, and scientific. In the introduction I gave a very brief characterization of this mode of study as complementary science. Having engaged in several concrete studies, I am now ready to attempt a more extensive and in-depth general discussion of the aims and methods of complementary science. The focus here will be to present complementary science as a productive direction in which the field of history and philosophy of science can advance, without denying the importance of other directions. Such a programmatic statement has a threefold aim. First, it will state explicitly some goals that have already been motivating much work in history and philosophy of science, including my own. Second, a strong statement of these goals will hopefully stimulate further work directed toward them. Finally, a clear definition of the mode of study I am

  end p.235

  advocating may encourage other related modes of study to be defined more clearly in opposition or comparison.1

  The Complementary Function of History and Philosophy of Science

  My position can be summarized as follows: history and philosophy of science can seek to generate scientific knowledge in places where science itself fails to do so; I will call this the complementary function of history and philosophy of science, as opposed to its descriptive and prescriptive functions. Lest the reader should reach an immediate verdict of absurdity, I hasten to add: by the time I have finished explaining the sense of the above statement, some peculiar light will have been thrown on the sense of the expressions "generate," "scientific knowledge," "science," "fails," and "history and philosophy of science" itself. (In the following discussion I will use the common informal abbreviation "HPS" for history and philosophy of science, not only for brevity but also in order to emphasize that what I envisage is one integrated mode of study, rather than history of science and philosophy of science simply juxtaposed to each other. HPS practiced with the aim of fulfilling its complementary function will be called HPS in its complementary mode or, synonymously, complementary science as I have already done in the introduction.)

  In tackling the question of purpose, one could do much worse than start by looking at the actual motivations that move people: why does anyone want to study such a thing as HPS, even devote an entire lifetime to it? Here the only obvious starting point I have is myself, with a recognition that different people approach the field with different motivations. What drove me initially into this field and still drives me on is a curious combination of delight and frustration, of enthusiasm and skepticism, about science. What keeps me going is the marvel of learning the logic and beauty of conceptual systems that had initially seemed alien and nonsensical. It is the admiration in looking at routine experimental setups and realizing that they are actually masterpieces in which errors annihilate each other and information is squeezed out of nature like water from rocks. It is also the frustration and anger at the neglect and suppression of alternative conceptual schemes, at the interminable calculations in which the meanings of basic terms are never made clear, and at the necessity of accepting and trusting laboratory instruments whose mechanisms I have neither time nor expertise to learn and understand.

  Can there be a common thread running through all of these various emotions? I think there is, and Thomas Kuhn's work gives me a starting point in articulating it. I am one of those who believe that Kuhn's ideas about normal science were at least as important as his ideas about scientific revolutions. And I feel an acute dilemma about normal science. I think Kuhn was right to emphasize that science as we know it can only function if certain fundamentals and conventions are taken for granted

  1. The expository models I wish to emulate for these purposes are the "Vienna Circle Manifesto" of the logical positivists (Neurath et al. [1929] 1973), and David Bloor's statement of the strong program in the sociology of scientific knowledge (1991, ch. 1).

  end p.236

  and shielded from criticism, and that even revolutionary innovations arise most effectively out of such tradition-bound research (see Kuhn 1970a, Kuhn 1970b, etc.). But I also think Karl Popper was right to maintain that the encouragement of such closed-mindedness in science was "a danger to science and, indeed, to our civilization," a civilization that often looks to science as the ideal form of knowledge and even a guide for managing social affairs (Popper 1970, 53). The practice of HPS as a complement to specialist normal science offers a way out of this dilemma between destroying science and fostering dogmatism. I believe that this is one of the main functions that HPS could serve, at once intellectual and political.

  In other words, a need for HPS arises from the fact that specialist science2 cannot afford to be completely open. There are two aspects to this necessary lack of openness. First, in specialist science many elements of knowledge must be taken for granted, since they are used as foundations or tools for studying other things. This also means that certain ideas and questions must be suppressed if they are heterodox enough to contradict or destabilize those items of knowledge that need to be taken for granted. Such are the necessities of specialist science, quite different from a gratuitous suppression of dissent. Second, not all worthwhile questions can be addressed in specialist science, simply because there are limits to the number of questions that a given community can afford to deal with at a given time. Each specialist scientific community will have some degree of consensus about which problems are most urgent, and also which problems can most plausibly be solved. Those problems that are considered either unimportant or unsolvable will be neglected. This is not malicious or misguided neglect, but a reasonable act of prioritization necessitated by limitations of material and intellectual resources.

  All the same, we must face up to the fact that suppressed and neglected questions represent a loss of knowledge, actual and potential. The complementary function of HPS is to recover and even create such questions anew and, hopefully, some answers to them as well. Therefore the desired result of research in HPS in this mode is an enhancement of our knowledge and understanding of nature. HPS can recover useful ideas and facts lost in the record of past science, address foundational questions concerning present science, and explore alternative conceptual systems and lines of experimental inquiry for future science. If these investigations are successful, they will complement and enrich current specialist science. HPS can enlarge and deepen the pool of our knowledge about nature; in other words, HPS can generate scientific knowledge.

  The following analogy may be helpful in illustrating my ideas about this complementary function of HPS, though it is rather far-fetched and should not be pushed beyond where it ceases to be useful. The most cogent argument for maintaining capitalism is that it is the best known economic system for ensuring high productivity and efficiency which, in the end, translate into the satisfaction of human needs and desires. At the same time, hardly anyone would deny the need for

  2. From here on I will speak of "specialist science" rather than "normal science," so that my discussion would be acceptable even to those who reject Kuhn's particular ideas about normal science or paradigms.

  end p.237

  philanthropy or a social welfare system that ameliorates the inevitable neglect of certain human needs and the unreasonable concentration of wealth in a capitalist economy. Likewise, we cannot do without specialist science because we do not know any other method of produ
cing knowledge so effectively. At the same time, we also cannot deny the need to offset some of the noxious consequences of producing knowledge in that manner, including the neglect and suppression of certain questions and the unreasonable concentration of knowledge to a small intellectual elite. Forcing specialist science to be completely open would destroy it, and that would be analogous to anarchy. A better option would be to leave specialist science alone within reasonable limits, but to offset its undesirable effects by practicing complementary science alongside it. In that way HPS can maintain the spirit of open inquiry for general society while the specialist scientific disciplines pursue esoteric research undisturbed.

  Philosophy, History, and Their Interaction in Complementary Science

  Having explained my basic ideas about the complementary function of HPS, I would like to take a step back and consider more carefully what it means to do historical and philosophical studies of science. Consider philosophy first. It is often claimed that good science should be philosophical as well as technical, and indeed we are still less than two centuries away from the time when scientists routinely referred to themselves as "philosophers." On the other hand, it is also true that most scientists today would regard most discussions currently taking place in professional philosophy as utterly irrelevant to science. The relation between science and philosophy is certainly complex, and this complexity adds to the confusion in trying to see clearly what it is that we are trying to do in the philosophy of science.

  I propose taking the philosophy of science as a field in which we investigate scientific questions that are not addressed in current specialist science—questions that could be addressed by scientists, but are excluded due to the necessities of specialization. In Kuhnian terms, science does not emerge from pre-science until the field of legitimate questions gets narrowed down with clearly recognized boundaries. For a long time it was common for one and the same treatise to contain tangled discussions of metaphysics, methodology, and what we would now identify as the proper "content" of science. Some may yearn for those good old days of natural philosophy, but it is not plausible to turn back the clock. Philosophy once aspired to encompass all knowledge, including what we now recognize as science. However, after various scientific disciplines (and other practices such as law and medicine) gradually carved themselves out, what is left under the rubric of philosophy is not the all-encompassing scholarship it once was. Our current academic discipline called "philosophy" became restricted and defined, as it were, against its own will. Philosophy as practiced now does not and cannot include science. But in my view that is just where its most important function now lies: to address what science and other specialisms neglect.

  The last thought throws some interesting light on the general nature of philosophy. We tend to call something a question "philosophical" if it is something

  end p.238

  that we do not normally deal with in the course of routine action although, on reflection, it is relevant to the practice. Similarly, when we say "the philosophy of X," we often mean a discipline which deals with questions that are relevant to another discipline X but normally not addressed in X itself. There are various reasons why relevant questions may be excluded from a system of thought or practices. The questions may be too general; they may threaten some basic beliefs within the system; asking them may be pointless because every specialist knows and agrees on the correct answers; the answers may not make any significant practical difference; and so on. And in the end, questioning has to be selective because it is simply impossible to ask the infinity of all possible questions. But philosophy can function as the embodiment of the ideal of openness, or at least a reluctance to place restrictions on the range of valid questions.

  Something very similar can also be said about the history of science. The similarity has two sources: in past science, there are some things that modern science regards as incorrect, and some other things that modern science regards as unnecessary. As scientific research moves on, much of science's past gets lost in a curious mix of neglect and suppression. Instrumental and mathematical techniques are often handed down to younger generations that happily disregard the arguments that had to be settled before those tools could be accepted. Awkward questions tend to be withdrawn after a period in which no clear answers are found, and defeated theories and worldviews are suppressed. Even when old facts and conclusions are retained, the assumptions, arguments, and methods that originally led to them may be rejected. The official "histories" that appear as mere garnishes in many science textbooks are more than happy to leave out all of these tedious or embarrassing elements of the past. They are left to the professional historians of science. Therefore, when the history of science asserts its independence from science itself, its domain is apt to be defined negatively, to encompass whatever elements of past science that current science cares not to retain in its institutional memory.

  Given these considerations, it should not come as a surprise that philosophical questions about science and historical questions about science are co-extensive to a considerable degree. This area of overlap provides a strong rationale for practicing HPS as an integrated discipline, not as a mere juxtaposition of the history of science and the philosophy of science. What are regarded as philosophical questions nowadays are quite likely to have been asked in the past as scientific questions; if so, the philosophical questions are simultaneously topics for historical inquiry as well. Whether an investigation in HPS is initially stimulated by philosophical or historical considerations, the result may well be the same.

  There are two obvious methods of initiating inquiry in the complementary mode of HPS, or, complementary science. They are obvious because they are rooted in very standard customs in philosophy and history of science. The first method, which has been my primary mode of questioning in this book, is to reconsider things that are taken for granted in current science. As anyone who has been exasperated by philosophers knows, skeptical scrutiny can raise doubts on just about anything. Some of these philosophical doubts can be fruitful starting points for historical inquiry, as it is quite possible that past scientists in fact addressed the

  end p.239

  same doubts in the process of the initial establishment of those taken-for-granted elements of modern science. This method is quite likely to focus attention on aspects of past science that may easily escape the notice of a historian who is not driven by the same problematic. After the historical record is established, philosophy can take its turn again to reassess the past arguments that have been unearthed. In that way philosophical analysis can initiate and guide interesting historical studies in the category of what I call "problem-centered narratives." This use of philosophy in history of science is very different from the use of historical episodes as empirical evidence in support of general philosophical theses about how science works.

  The second method of initiating inquiry in complementary science is to look out for apparently unusual and puzzling elements in past science. This is something that historians of science have become very accustomed to doing in recent decades. History is probably one of the sharpest tools available to the philosopher wishing to explore the presuppositions and limitations of the forms of scientific knowledge that are almost universally accepted now. The historical record often shows us fresh facts, questions, and ways of thinking that may not occur to us even in the course of an open critical scrutiny of current science. In order to facilitate this possibility, we can actively seek elements of past science that have not survived into modern science. After those elements are identified, it is important to investigate the historical reasons for their rejection and assess the philosophical cogency of those reasons.

  These processes of historical-philosophical inquiry are intertwined and self-perpetuating, since they will reveal further philosophical concerns and previously unknown bits of history that can stimulate other lines of inquiry. After some thinking about research in complementary science, and certainly while one is imme
rsed in it, it becomes difficult to see where philosophy ends and history begins or vice versa. Philosophy and history work together in identifying and answering questions about the world that are excluded from current specialist science. Philosophy contributes its useful habits of organized skepticism and criticism, and history serves as the supplier of forgotten questions and answers. History of science and philosophy of science are inseparable partners in the extension and enrichment of scientific knowledge. I propose to call the discipline they form together complementary science because it should exist as a vital complement to specialist science.

  The Character of Knowledge Generated by Complementary Science

  Having explained the basic motivations for complementary science and the nature of the historical and philosophical studies that constitute it, I must now give a more detailed defense of the most controversial aspect of my vision. I have claimed that complementary science can generate scientific knowledge where science itself fails to do so. On the face of it, this sounds absurd. How could any knowledge about nature be generated by historical or philosophical studies? And if complementary science does generate scientific knowledge, shouldn't it just be counted as part of science, and isn't it foolhardy to suggest that such scientific activity could be undertaken by anyone but properly trained specialists? Such a sense of absurdity is

 

‹ Prev