Edison, His Life and Inventions, vol. 1
Page 28
It was to confront and deal with just this element of doubt in London and in Europe generally, that the dispatch of Johnson to England and of Batchelor to France was intended. Throughout the Edison staff there was a mingled feeling of pride in the work, resentment at the doubts expressed about it, and keen desire to show how excellent it was. Batchelor left for Paris in July, 1881--on his second trip to Europe that year--and the exhibit was made which brought such an instantaneous recognition of the incalculable value of Edison's lighting inventions, as evidenced by the awards and rewards immediately bestowed upon him. He was made an officer of the Legion of Honor, and Prof. George F. Barker cabled as follows from Paris, announcing the decision of the expert jury which passed upon the exhibits: ``Accept my congratulations. You have distanced all competitors and obtained a diploma of honor, the highest award given in the Exposition. No person in any class in which you were an exhibitor received a like reward.''
Nor was this all. Eminent men in science who had previously expressed their disbelief in the statements made as to the Edison system were now foremost in generous praise of his notable achievements, and accorded him full credit for its completion. A typical instance was M. Du Moncel, a distinguished electrician, who had written cynically about Edison's work and denied its practicability. He now recanted publicly in this language, which in itself shows the state of the art when Edison came to the front: ``All these experiments achieved but moderate success, and when, in 1879, the new Edison incandescent carbon lamp was announced, many of the scientists, and I, particularly, doubted the accuracy of the reports which came from America. This horseshoe of carbonized paper seemed incapable to resist mechanical shocks and to maintain incandescence for any considerable length of time. Nevertheless, Mr. Edison was not discouraged, and despite the active opposition made to his lamp, despite the polemic acerbity of which he was the object, he did not cease to perfect it; and he succeeded in producing the lamps which we now behold exhibited at the Exposition, and are admired by all for their perfect steadiness.''
The competitive lamps exhibited and tested at this time comprised those of Edison, Maxim, Swan, and Lane-Fox. The demonstration of Edison's success stimulated the faith of his French supporters, and rendered easier the completion of plans for the Société Edison Continental, of Paris, formed to operate the Edison patents on the Continent of Europe. Mr. Batchelor, with Messrs. Acheson and Hipple, and one or two other assistants, at the close of the Exposition transferred their energies to the construction and equipment of machine-shops and lamp factories at Ivry-sur-Seine for the company, and in a very short time the installation of plants began in various countries--France, Italy, Holland, Belgium, etc.
All through 1881 Johnson was very busy, for his part, in England. The first ``Jumbo'' Edison dynamo had gone to Paris; the second and third went to London, where they were installed in 1881 by Mr. Johnson and his assistant, Mr. W. J. Hammer, in the three-thousand-light central station on Holborn Viaduct, the plant going into operation on January 12, 1882. Outside of Menlo Park this was the first regular station for incandescent lighting in the world, as the Pearl Street station in New York did not go into operation until September of the same year. This historic plant was hurriedly thrown together on Crown land, and would doubtless have been the nucleus of a great system but for the passage of the English electric lighting act of 1882, which at once throttled the industry by its absurd restrictive provisions, and which, though greatly modified, has left England ever since in a condition of serious inferiority as to development in electric light and power. The streets and bridges of Holborn Viaduct were lighted by lamps turned on and off from the station, as well as the famous City Temple of Dr. Joseph Parker, the first church in the world to be lighted by incandescent lamps--indeed, so far as can be ascertained, the first church to be illuminated by electricity in any form. Mr. W. J. Hammer, who supplies some very interesting notes on the installation, says: ``I well remember the astonishment of Doctor Parker and his associates when they noted the difference of temperature as compared with gas. I was informed that the people would not go in the gallery in warm weather, owing to the great heat caused by the many gas jets, whereas on the introduction of the incandescent lamp there was no complaint.'' The telegraph operating-room of the General Post-Office, at St. Martin's-Le Grand and Newgate Street nearby, was supplied with four hundred lamps through the instrumentality of Mr. (Sir) W. H. Preece, who, having been seriously sceptical as to Mr. Edison's results, became one of his most ardent advocates, and did much to facilitate the introduction of the light. This station supplied its customers by a network of feeders and mains of the standard underground two-wire Edison tubing-conductors in sections of iron pipe--such as was used subsequently in New York, Milan, and other cities. It also had a measuring system for the current, employing the Edison electrolytic meter. Arc lamps were operated from its circuits, and one of the first sets of practicable storage batteries was used experimentally at the station. In connection with these batteries Mr. Hammer tells a characteristic anecdote of Edison: ``A careless boy passing through the station whistling a tune and swinging carelessly a hammer in his hand, rapped a carboy of sulphuric acid which happened to be on the floor above a `Jumbo' dynamo. The blow broke the glass carboy, and the acid ran down upon the field magnets of the dynamo, destroying the windings of one of the twelve magnets. This accident happened while I was taking a vacation in Germany, and a prominent scientific man connected with the company cabled Mr. Edison to know whether the machine would work if the coil was cut out. Mr. Edison sent the laconic reply: `Why doesn't he try it and see?' Mr. E. H. Johnson was kept busy not only with the cares and responsibilities of this pioneer English plant, but by negotiations as to company formations, hearings before Parliamentary committees, and particularly by distinguished visitors, including all the foremost scientific men in England, and a great many well-known members of the peerage. Edison was fortunate in being represented by a man with so much address, intimate knowledge of the subject, and powers of explanation. As one of the leading English papers said at the time, with equal humor and truth: `There is but one Edison, and Johnson is his prophet.' ''
As the plant continued in operation, various details and ideas of improvement emerged, and Mr. Hammer says: ``Up to the time of the construction of this plant it had been customary to place a single-pole switch on one wire and a safety fuse on the other; and the practice of putting fuses on both sides of a lighting circuit was first used here. Some of the first, if not the very first, of the insulated fixtures were used in this plant, and many of the fixtures were equipped with ball insulating joints, enabling the chandeliers--or `electroliers'--to be turned around, as was common with the gas chandeliers. This particular device was invented by Mr. John B. Verity, whose firm built many of the fixtures for the Edison Company, and constructed the notable electroliers shown at the Crystal Palace Exposition of 1882.''
We have made a swift survey of developments from the time when the system of lighting was ready for use, and when the staff scattered to introduce it. It will be readily understood that Edison did not sit with folded hands or drop into complacent satisfaction the moment he had reached the practical stage of commercial exploitation. He was not willing to say ``Let us rest and be thankful,'' as was one of England's great Liberal leaders after a long period of reform. On the contrary, he was never more active than immediately after the work we have summed up at the beginning of this chapter. While he had been pursuing his investigations of the generator in conjunction with the experiments on the incandescent lamp, he gave much thought to the question of distribution of the current over large areas, revolving in his mind various plans for the accomplishment of this purpose, and keeping his mathematicians very busy working on the various schemes that suggested themselves from time to time. The idea of a complete system had been in his mind in broad outline for a long time, but did not crystallize into commercial form until the incandescent lamp was an accomplished fact. Thus in January, 1880, his first p
atent application for a ``System of Electrical Distribution'' was signed. It was filed in the Patent Office a few days later, but was not issued as a patent until August 30, 1887. It covered, fundamentally, multiple arc distribution, how broadly will be understood from the following extracts from the New York Electrical Review of September 10, 1887: ``It would appear as if the entire field of multiple distribution were now in the hands of the owners of this patent.... The patent is about as broad as a patent can be, being regardless of specific devices, and laying a powerful grasp on the fundamental idea of multiple distribution from a number of generators throughout a metallic circuit.''
Mr. Edison made a number of other applications for patents on electrical distribution during the year 1880. Among these was the one covering the celebrated ``Feeder'' invention, which has been of very great commercial importance in the art, its object being to obviate the ``drop'' in pressure, rendering lights dim in those portions of an electric-light system that were remote from the central station.[14.1]
From these two patents alone, which were absolutely basic and fundamental in effect, and both of which were, and still are, put into actual use wherever central-station lighting is practiced, the reader will see that Mr. Edison's patient and thorough study, aided by his keen foresight and unerring judgment, had enabled him to grasp in advance with a master hand the chief and underlying principles of a true system-- that system which has since been put into practical use all over the world, and whose elements do not need the touch or change of more modern scientific knowledge.
These patents were not by any means all that he applied for in the year 1880, which it will be remembered was the year in which he was perfecting the incandescent electric lamp and methods, to put into the market for competition with gas. It was an extraordinarily busy year for Mr. Edison and his whole force, which from time to time was increased in number. Improvement upon improvement was the order of the day. That which was considered good to-day was superseded by something better and more serviceable to-morrow. Device after device, relating to some part of the entire system, was designed, built, and tried, only to be rejected ruthlessly as being unsuitable; but the pursuit was not abandoned. It was renewed over and over again in innumerable ways until success had been attained.
During the year 1880 Edison had made application for sixty patents, of which thirty-two were in relation to incandescent lamps; seven covered inventions relating to distributing systems (including the two above particularized); five had reference to inventions of parts, such as motors, sockets, etc.; six covered inventions relating to dynamo-electric machines; three related to electric railways, and seven to miscellaneous apparatus, such as telegraph relays, magnetic ore separators, magneto signalling apparatus, etc.
The list of Mr. Edison's patents (see Appendices) is not only a monument to his life's work, but serves to show what subjects he has worked on from year to year since 1868. The reader will see from an examination of this list that the years 1880, 1881, 1882, and 1883 were the most prolific periods of invention. It is worth while to scrutinize this list closely to appreciate the wide range of his activities. Not that his patents cover his entire range of work by any means, for his note-books reveal a great number of major and minor inventions for which he has not seen fit to take out patents. Moreover, at the period now described Edison was the victim of a dishonest patent solicitor, who deprived him of a number of patents in the following manner:
``Around 1881-82 I had several solicitors attending to different classes of work. One of these did me a most serious injury. It was during the time that I was developing my electric-lighting system, and I was working and thinking very hard in order to cover all the numerous parts, in order that it would be complete in every detail. I filed a great many applications for patents at that time, but there were seventy-eight of the inventions I made in that period that were entirely lost to me and my company by reason of the dishonesty of this patent solicitor. Specifications had been drawn, and I had signed and sworn to the application for patents for these seventy-eight inventions, and naturally I supposed they had been filed in the regular way.
``As time passed I was looking for some action of the Patent Office, as usual, but none came. I thought it very strange, but had no suspicions until I began to see my inventions recorded in the Patent Office Gazette as being patented by others. Of course I ordered an investigation, and found that the patent solicitor had drawn from the company the fees for filing all these applications, but had never filed them. All the papers had disappeared, however, and what he had evidently done was to sell them to others, who had signed new applications and proceeded to take out patents themselves on my inventions. I afterward found that he had been previously mixed up with a somewhat similar crooked job in connection with telephone patents.
``I am free to confess that the loss of these seventy-eight inventions has left a sore spot in me that has never healed. They were important, useful, and valuable, and represented a whole lot of tremendous work and mental effort, and I had had a feeling of pride in having overcome through them a great many serious obstacles, One of these inventions covered the multipolar dynamo. It was an elaborated form of the type covered by my patent No. 219,393 which had a ring armature. I modified and improved on this form and had a number of pole pieces placed all around the ring, with a modified form of armature winding. I built one of these machines and ran it successfully in our early days at the Goerck Street shop.
``It is of no practical use to mention the man's name. I believe he is dead, but he may have left a family. The occurrence is a matter of the old Edison Company's records.''
It will be seen from an examination of the list of patents in the Appendix that Mr. Edison has continued year after year adding to his contributions to the art of electric lighting, and in the last twenty-eight years--1880-1908--has taken out no fewer than three hundred and seventy-five patents in this branch of industry alone. These patents may be roughly tabulated as follows:
Incandescent lamps and their manufacture....................149
Distributing systems and their control and regulation....... 77
Dynamo-electric machines and accessories....................106
Minor parts, such as sockets, switches, safety catches,
meters, underground conductors and parts, etc...............43
Quite naturally most of these patents cover inventions that are in the nature of improvements or based upon devices which he had already created; but there are a number that relate to inventions absolutely fundamental and original in their nature. Some of these have already been alluded to; but among the others there is one which is worthy of special mention in connection with the present consideration of a complete system. This is patent No. 274,290, applied for November 27, 1882, and is known as the ``Three-wire'' patent. It is described more fully in the Appendix.
The great importance of the ``Feeder'' and ``Three-wire'' inventions will be apparent when it is realized that without them it is a question whether electric light could be sold to compete with low-priced gas, on account of the large investment in conductors that would be necessary. If a large city area were to be lighted from a central station by means of copper conductors running directly therefrom to all parts of the district, it would be necessary to install large conductors, or suffer such a drop of pressure at the ends most remote from the station as to cause the lights there to burn with a noticeable diminution of candle-power. The Feeder invention overcame this trouble, and made it possible to use conductors only one-eighth the size that would otherwise have been necessary to produce the same results.
A still further economy in cost of conductors was effected by the ``Three-wire'' invention, by the use of which the already diminished conductors could be still further reduced to one-third of this smaller size, and at the same time allow of the successful operation of the station with far better results than if it were operated exactly as at first conceived. The Feeder and Three-wire systems are at this day used in all
parts of the world, not only in central-station work, but in the installation and operation of isolated electric-light plants in large buildings. No sensible or efficient station manager or electric contractor would ever think of an installation made upon any other plan. Thus Mr. Edison's early conceptions of the necessities of a complete system, one of them made even in advance of practice, have stood firm, unimproved, and unchanged during the past twenty-eight years, a period of time which has witnessed more wonderful and rapid progress in electrical science and art than has been known during any similar art or period of time since the world began.
It must be remembered that the complete system in all its parts is not comprised in the few of Mr. Edison's patents, of which specific mention is here made. In order to comprehend the magnitude and extent of his work and the quality of his genius, it is necessary to examine minutely the list of patents issued for the various elements which go to make up such a system. To attempt any relation in detail of the conception and working-out of each part or element; to enter into any description of the almost innumerable experiments and investigations that were made would entail the writing of several volumes, for Mr. Edison's close-written note-books covering these subjects number nearly two hundred.