Book Read Free

Why We Sleep

Page 31

by Matthew Walker


  It is no evolutionary coincidence that we humans have developed the pre-bed ritual of splashing water on one of the most vascular parts of our bodies—our face, using one of the other highly vascular surfaces—our hands. You may think the feeling of being facially clean helps you sleep better, but facial cleanliness makes no difference to your slumber. The act itself does have sleep-inviting powers, however, as that water, warm or cold, helps dissipate heat from the surface of the skin as it evaporates, thereby cooling the inner body core.

  The need to dump heat from our extremities is also the reason that you may occasionally stick your hands and feet out from underneath the bedcovers at night due to your core becoming too hot, usually without your knowing. Should you have children, you’ve probably seen the same phenomenon when you check in on them late at night: arms and legs dangling out of the bed in amusing (and endearing) ways, so different from the neatly positioned limbs you placed beneath the sheets upon first tucking them into bed. The limb rebellion aids in keeping the body core cool, allowing it to fall and stay asleep.

  The coupled dependency between sleep and body cooling is evolutionarily linked to the twenty-four-hour ebb and flow of daily temperature. Homo sapiens (and thus modern sleep patterns) evolved in eastern equatorial regions of Africa. Despite experiencing only modest fluctuations in average temperature across a year (+/- 3°C, or 5.4°F), these areas have larger temperature differentials across a day and night in both the winter (+/- 14°F, or 8°C) and the summer (+/- 12°F, or 7°C).

  Pre-industrial cultures, such as the nomadic Gabra tribe in northern Kenya, and the hunter-gatherers of the Hadza and San tribes, have remained in thermic harmony with this day-night cycle. They sleep in porous huts with no cooling or heating systems, minimal bedding, and lie semi-naked. They sleep this way from birth to death. Such willing exposure to ambient temperature fluctuations is a major factor (alongside the lack of artificial evening light) determining their well-timed, healthy sleep quality. Without indoor-temperature control, heavy bedding, or excess nighttime attire, they display a form of thermal liberalism that assists, rather than battles against, sleep’s conditional needs.

  In stark contrast, industrialized cultures have severed their relationship with this natural rise and fall of environmental temperature. Through climate-controlled homes with central heat and air-conditioning, and the use of bedcovers and pajamas, we have architected a minimally varying or even constant thermal tenor in our bedrooms. Bereft of the natural drop in evening temperature, our brains do not receive the cooling instruction within the hypothalamus that facilitates a naturally timed release of melatonin. Moreover, our skin has difficulty “breathing out” the heat it must in order to drop core temperature and make the transition to sleep, suffocated by the constant heat signal of controlled home temperatures.

  A bedroom temperature of around 65 degrees Fahrenheit (18.3°C) is ideal for the sleep of most people, assuming standard bedding and clothing. This surprises many, as it sounds just a little too cold for comfort. Of course, that specific temperature will vary depending on the individual in question and their unique physiology, gender, and age. But like calorie recommendations, it’s a good target for the average human being. Most of us set ambient house and/or bedroom temperatures higher than are optimal for good sleep and this likely contributes to lower quantity and/or quality of sleep than you are otherwise capable of getting. Lower than 55 degrees Fahrenheit (12.5°C) can be harmful rather than helpful to sleep, unless warm bedding or nightclothes are used. However, most of us fall into the opposite category of setting a controlled bedroom temperature that is too high: 70 or 72 degrees. Sleep clinicians treating insomnia patients will often ask about room temperature, and will advise patients to drop their current thermostat set-point by 3 to 5 degrees from that which they currently use.

  Anyone disbelieving of the influence of temperature on sleep can explore some truly bizarre experiments on this topic strewn throughout the research literature. Scientists have, for example, gently warmed the feet or the body of rats to encourage blood to rise to the surface of the skin and emit heat, thereby decreasing core body temperature. The rats drifted off to sleep far faster than was otherwise normal.

  In a more outlandish human version of the experiment, scientists constructed a whole-body thermal sleeping suit, not dissimilar in appearance to a wet suit. Water was involved, but fortunately those willing to risk their dignity by donning the outfit did not get wet. Lining the suit was an intricate network of thin tubes, or veins. Crisscrossing the body like a detailed road map, these artificial veins traversed all major districts of the body: arms, hands, torso, legs, feet. And like the independent governance of local roads by separate states or counties of a nation, each body territory received its own separate water feed. In doing so, the scientists could exquisitely and selectively choose which parts of the body they would circulate water around, thereby controlling the temperature on the skin’s surface in individual body areas—all while the participant lay quietly in bed.

  Selectively warming the feet and hands by just a small amount (1°F, or about 0.5°C) caused a local swell of blood to these regions, thereby charming heat out of the body’s core, where it had been trapped. The result of all this ingenuity: sleep took hold of the participants in a significantly shorter time, allowing them to fall asleep 20 percent faster than was usual, even though these were already young, healthy, fast-sleeping individuals.fn3

  Not satisfied with their success, the scientists took on the challenge of improving sleep in two far more problematic groups: older adults who generally have a harder time falling asleep, and patients with clinical insomnia whose sleep was especially stubborn. Just like the young adults, the older adults fell asleep 18 percent faster than normal when receiving the same thermal assistance from the bodysuit. The improvement in the insomniacs was even more impressive—a 25 percent reduction in the time it took them to drift off into sleep.

  Better still, as the researchers continued to apply body-temperature cooling throughout the night, the amount of time spent in stable sleep increased while time awake decreased. Before the body-cooling therapy, these groups had a 58 percent probability of waking up in the last half of the night and struggled to get back to sleep—a classic hallmark of sleep maintenance insomnia. This number tumbled to just a 4 percent likelihood when receiving thermal help from the bodysuit. Even the electrical quality of sleep—especially the deep, powerful brainwaves of NREM sleep—had been boosted by the thermal manipulation in all these individuals.

  Knowingly or not, you have probably used this proven temperature manipulation to help your own sleep. A luxury for many is to draw a hot bath in the evening and soak the body before bedtime. We feel it helps us fall asleep more quickly, which it can, but for the opposite reason most people imagine. You do not fall asleep faster because you are toasty and warm to the core. Instead, the hot bath invites blood to the surface of your skin, giving you that flushed appearance. When you get out of the bath, those dilated blood vessels on the surface quickly help radiate out inner heat, and your core body temperature plummets. Consequently, you fall asleep more quickly because your core is colder. Hot baths prior to bed can also induce 10 to 15 percent more deep NREM sleep in healthy adults.fn4

  AN ALARMING FACT

  Adding to the harm of evening light and constant temperature, the industrial era inflicted another damaging blow to our sleep: enforced awakening. With the dawn of the industrial age and the emergence of large factories came a challenge: How can you guarantee the en masse arrival of a large workforce all at the same time, such as at the start of a shift?

  The solution came in the form of the factory whistle—arguably the earliest (and loudest) version of an alarm clock. The whistle’s skirl across the working village aimed to wrench large numbers of individuals from sleep at the same morning hour day after day. A second whistle would often signal the beginning of the work shift itself. Later, this invasive messenger of wakefulness entered the bedroom in
the form of the modern-day alarm clock (and the second whistle was replaced by the banality of time card punching).

  No other species demonstrates this unnatural act of prematurely and artificially terminating sleep,fn5 and for good reason. Compare the physiological state of the body after being rudely awakened by an alarm to that observed after naturally waking from sleep. Participants artificially wrenched from sleep will suffer a spike in blood pressure and a shock acceleration in heart rate caused by an explosive burst of activity from the fight-or-flight branch of the nervous system.fn6

  Most of us are unaware of an even greater danger that lurks within the alarm clock: the snooze button. If alarming your heart, quite literally, were not bad enough, using the snooze feature means that you will repeatedly inflict that cardiovascular assault again and again within a short span of time. Step and repeat this at least five days a week, and you begin to understand the multiplicative abuse your heart and nervous system will suffer across a life span. Waking up at the same time of day, every day, no matter if it is the week or weekend is a good recommendation for maintaining a stable sleep schedule if you are having difficulty with sleep. Indeed, it is one of the most consistent and effective ways of helping people with insomnia get better sleep. This unavoidably means the use of an alarm clock for many individuals. If you do use an alarm clock, do away with the snooze function, and get in the habit of waking up only once to spare your heart the repeated shock.

  Parenthetically, a hobby of mine is to collect the most innovative (i.e., ludicrous) alarm clock designs in some hope of cataloging the depraved ways we humans wrench our brains out of sleep. One such clock has a number of geometric blocks that sit in complementary-shaped holes on a pad. When the alarm goes off in the morning, it not only erupts into a blurting shriek, but also explodes the blocks out across the bedroom floor. It will not shut off the alarm until you pick up and reposition all of the blocks in their respective holes.

  My favorite, however, is the shredder. You take a paper bill—let’s say $20—and slide it into the front of the clock at night. When the alarm goes off in the morning, you have a short amount of time to wake up and turn the alarm off before it begins shredding your money. The brilliant behavioral economist Dan Ariely has suggested an even more fiendish system wherein your alarm clock is connected, by Wi-Fi, to your bank account. For every second you remain asleep, the alarm clock will send $10 to a political organization … that you absolutely despise.

  That we have devised such creative—and even painful—ways of waking ourselves up in the morning says everything about how under-slept our modern brains are. Squeezed by the vise grips of an electrified night and early-morning start times, bereft of twenty-four-hour thermal cycles, and with caffeine and alcohol surging through us in various quantities, many of us feel rightly exhausted and crave that which seems always elusive: a full, restful night of natural deep sleep. The internal and external environments in which we evolved are not those in which we lie down to rest in the twenty-first century. To morph an agricultural concept from the wonderful writer and poet Wendell Berry,fn7 modern society has taken one of nature’s perfect solutions (sleep) and neatly divided it into two problems: (1) a lack thereof at night, resulting in (2) an inability to remain fully awake during the day. These problems have forced many individuals to go in search of prescription sleeping pills. Is this wise? In the next chapter, I will provide you with scientifically and medically informed answers.

  Chapter 14

  Hurting and Helping Your Sleep

  Pills vs. Therapy

  In the past month, almost 10 million people in America will have swallowed some kind of a sleeping aid. Most relevant, and a key focus of this chapter, is the (ab)use of prescription sleeping pills. Sleeping pills do not provide natural sleep, can damage health, and increase the risk of life-threatening diseases. We will explore the alternatives that exist for improving sleep and combating insipid insomnia.

  SHOULD YOU TAKE TWO OF THESE BEFORE BED?

  No past or current sleeping medications on the legal (or illegal) market induce natural sleep. Don’t get me wrong—no one would claim that you are awake after taking prescription sleeping pills. But to suggest that you are experiencing natural sleep would be an equally false assertion.

  The older sleep medications—termed “sedative hypnotics,” such as diazepam—were blunt instruments. They sedated you rather than assisting you into sleep. Understandably, many people mistake the former for the latter. Most of the newer sleeping pills on the market present a similar situation, though they are slightly less heavy in their sedating effects. Sleeping pills, old and new, target the same system in the brain that alcohol does—the receptors that stop your brain cells from firing—and are thus part of the same general class of drugs: sedatives. Sleeping pills effectively knock out the higher regions of your brain’s cortex.

  If you compare natural, deep-sleep brainwave activity to that induced by modern-day sleeping pills, such as zolpidem (brand name Ambien) or eszopiclone (brand name Lunesta), the electrical signature, or quality, is deficient. The electrical type of “sleep” these drugs produce is lacking in the largest, deepest brainwaves.fn1 Adding to this state of affairs are a number of unwanted side effects, including next-day grogginess, daytime forgetfulness, performing actions at night of which you are not conscious (or at least have partial amnesia of in the morning), and slowed reaction times during the day that can impact motor skills, such as driving.

  True even of the newer, shorter-acting sleeping pills on the market, these symptoms instigate a vicious cycle. The waking grogginess can lead people to reach for more cups of coffee or tea to rev themselves up with caffeine throughout the day and evening. That caffeine, in turn, makes it harder for the individual to fall asleep at night, worsening the insomnia. In response, people often take an extra half or whole sleeping pill at night to combat the caffeine, but this only amplifies the next-day grogginess from the drug hangover. Even greater caffeine consumption then occurs, perpetuating the downward spiral.

  Another deeply unpleasant feature of sleeping pills is rebound insomnia. When individuals stop taking these medications, they frequently suffer far worse sleep, sometimes even worse than the poor sleep that led them to seek out sleeping pills to begin with. The cause of rebound insomnia is a type of dependency in which the brain alters its balance of receptors as a reaction to the increased drug dose, trying to become somewhat less sensitive as a way of countering the foreign chemical within the brain. This is also known as drug tolerance. But when the drug is stopped, there is a withdrawal process, part of which involves an unpleasant spike in insomnia severity.

  We should not be surprised by this. The majority of prescription sleeping pills are, after all, in a class of physically addictive drugs. Dependency scales with continued use, and withdrawal ensues in abstinence. Of course, when patients come off the drug for a night and have miserable sleep as a result of rebound insomnia, they often go right back to taking the drug the following night. Few people realize that this night of severe insomnia, and the need to start retaking the drug, is partially or wholly caused by the persistent use of sleeping pills to begin with.

  The irony is that many individuals experience only a slight increase in “sleep” from these medications, and the benefit is more subjective than objective. A recent team of leading medical doctors and researchers examined all published studies to date on newer forms of sedative sleeping pills that most people take.fn2 They considered sixty-five separate drug-placebo studies, encompassing almost 4,500 individuals. Overall, participants subjectively felt they fell asleep faster and slept more soundly with fewer awakenings, relative to the placebo. But that’s not what the actual sleep recordings showed. There was no difference in how soundly the individuals slept. Both the placebo and the sleeping pills reduced the time it took people to fall asleep (between ten and thirty minutes), but the change was not statistically different between the two. In other words, there was no objective benefit of these sl
eeping pills beyond that which a placebo offered.

  Summarizing the findings, the committee stated that sleeping pills only produced “slight improvements in subjective and polysomnographic sleep latency”—that is, the time it takes to fall asleep. The committee concluded the report by stating that the effect of current sleeping medications was “rather small and of questionable clinical importance.” Even the newest sleeping pill for insomnia, called suvorexant (brand name Belsomra), has proved minimally effective, as we discussed in chapter 12. Future versions of such drugs may offer meaningful sleep improvements, but for now the scientific data on prescription sleeping pills suggests that they may not be the answer to returning sound sleep to those struggling to generate it on their own.

  SLEEPING PILLS—THE BAD, THE BAD, AND THE UGLY

  Existing prescription sleeping pills are minimally helpful, but are they harmful, even deadly? Numerous studies have something to say on this point, yet much of the public remains unaware of their findings.

  Natural deep sleep, as we have previously learned, helps cement new memory traces within the brain, part of which require the active strengthening of connections between synapses that make up a memory circuit. How this essential nighttime storage function is affected by drug-induced sleep has been the focus of recent animal studies. After a period of intense learning, researchers at the University of Pennsylvania gave animals a weight-appropriate dose of Ambien or a placebo and then examined the change in brain rewiring after sleep in both groups. As expected, natural sleep solidified memory connections within the brain in the placebo condition that had been formed during the initial learning phase. Ambien-induced sleep, however, not only failed to match these benefits (despite the animals sleeping just as long), but caused a 50 percent weakening (unwiring) of the brain-cell connections originally formed during learning. In doing so, Ambien-laced sleep became a memory eraser, rather than engraver.

 

‹ Prev