Trader of Secrets: A Paul Madriani Novel
Page 28
“And we’re going to be sitting here picking our noses,” said Thorpe.
“You think he might have killed them? The girl and Diggs, I mean?” said Britain.
“No. If he extracted the information, he’d just leave them. No reason to harm them. They all left together. The girl wanted out of here anyway. She wouldn’t have been hard to convince. Madriani’s tracking Liquida. Now Hirst has his daughter. That gives him a trump card,” said Thorpe. “Madriani’s in Mexico. The question is, where? That’s where they’ll be going.”
“Let me check the airports.” Britain started to get up from his chair.
“Do it . . . No! On second thought, don’t.”
“Why not?” said Britain.
“Because he wouldn’t go out that way. He’s got the dog.” Thorpe looked at him. “Unless he shot him. And if he did that, he may as well shoot the girl, in which case he’ll never get anything out of Diggs. I know the man. No, if Hirst took the dog, it was because he had a way to get him out.”
“What do you mean?”
Thorpe thought about it for a moment. A boat was too slow. The only other aircraft . . . “Check El Al,” said Thorpe. The Israeli national airline had been known to cut corners for their government on sensitive military and political matters in the past. “Otherwise check for any MATS flights. Military air transport. Not ours, theirs,” said Thorpe. “See if there were any Israeli military flights in or out of the area around Washington since last night. If they’re still on the ground, hold them. All flights. If they’re in the air, see if the air force can pick them up on radar. If they’re over U.S. airspace, see if we can scramble fighters to bring them back.”
Britain was headed for the door.
Thorpe stood up. “And see if any of the MATS filed flight plans.” Thorpe knew it was a long shot. Hirst would never leave a flight plan behind, but maybe his pilot did. Sarah Madriani was gone. He pounded the top of his desk with a closed fist. At the moment he could have killed Fowler with his bare hands. “What in the hell is Project Thor?”
Chapter
Fifty-One
Joseph-Louis Lagrange was an eighteenth-century French mathematician who determined that two large orbiting bodies in space could create gravitational pockets in which a third object, smaller than the first two, could become trapped and held in place.
According to Lagrange’s mathematical formulas, five such Lagrange points were created by the gravitational pull of the sun and the earth. Another five such points existed as a result of the competing tug of gravity caused by the earth and the moon.
All of this, of course, was mere theory until American and Russian scientists, during the early years of space exploration, verified that all five of the solar and lunar Lagrange points actually existed. Some were stable. Some were not. Those with stability have proven useful over the years as places to park geosynchronous satellites where they can be held in place with little or no maintenance.
Lunar Lagrange Point Two, or L2, was one of the less stable of these points. In order to hold an object at lunar L2, regular periodic maintenance is required. Without such maintenance the object in question will either be spun off into space or crash into the moon. For this as well as other reasons, lunar L2 is generally not deemed useful as a location for parking satellites.
However, for Larry Leffort and Project Thor, L2 offered immense advantages that far outweighed its gravitational instability. L2 is located on the back side of the moon. An object placed in an elliptical halo orbit at L2 could be maintained as if in a raceway at intense velocity. It would be visible from the earth for only short periods each day at the outer edge of its elliptical flight pattern, during which time maintenance could be performed to hold it in place. During the rest of the time, an object at lunar L2 would be completely concealed from the earth by the face of the moon. Unless someone was looking for it or knew it was there, the chances of observing it were not great, especially if it was held in this pattern for only a short time.
Leffort smiled as he settled in behind the control desk in the jungle enclave north of Coba. He looked at the array of four large computer screens in front of him to check the progress made since his departure from his office at NASA’s Caltech facility in California. In less than ten days, the scientists at Coba had done a fine job. But then the software and classified information that Leffort had given them was spot-on.
Leffort had delivered to them access and complete control over two test weapons.
These Near-Earth Objects (NEOs) had been carefully selected and harvested by NASA from among the hundreds that had been identified in the last decade as possible earth impactors and therefore potential hazards. They had been further whittled down based on size, composition, and velocity. In the end they had settled on two relatively small iron-core asteroids, each one approximately twice the size of a school bus.
During the initial trial phase, tractor rocket motors had been attached to each of the asteroids and tested. The results far exceeded anything NASA could have expected. In less than a year, each of the asteroids had been nudged and guided into a pattern in the inner solar system that made it clear to NASA that maneuvering the objects with precision in space was entirely feasible.
Beyond this, the telecommand and telemetry software that would allow the asteroids to be parked at the L2 location behind the moon had been computer tested with a high level of reliability and assurance. NASA was confident this could be done.
The space agency was about to move the objects back out and dispose of them in a collision course with the sun when suddenly they lost control of both impactors.
Leffort had introduced a virus into the JPL computers that controlled the rockets and the experimental gravity tractors. The software controlling the telecommands was the key to the kingdom. Leffort notified Bruno that the scientists in Mexico, using the software Leffort had supplied to them, now had control of the system.
At first NASA didn’t know what was happening. They knew it was a software failure, but they couldn’t be sure of the cause. And while it ran a wrinkle through their experiment, the test was largely concluded. There was no real reason to pursue it. Over the next several months they would have time to find it and fix it. But there was no real urgency.
The two asteroids were moving at speeds incomprehensible to the average person, in excess of forty thousand miles per hour. This was more than twenty times the speed of the fastest rifle bullet on Earth and more than twice as fast as the manned missions to the moon.
Trying to relocate the two missing asteroids in the vastness of space using the narrow focal range of their telescopes was like trying to find a speeding needle scanning the sky through a drinking straw. NASA knew there was no chance of an accidental impact with Earth based on the last telemetry readings before they lost contact. Both asteroids were on a harmless trajectory out into space beyond the solar system, because that is where they were last seen.
But in fact, control had been taken by the telecommand and telemetry station that was now up and running in the jungles of the Yucatán.
Construction of this facility had been financed by Middle Eastern powers that were now awash in oil money. It had taken place during a period when the Mexican government was distracted and under a virtual state of siege by the drug cartels. Mexico was ripe for the plucking, and adversaries of the United States, the Great Satan, were well aware of this.
For thirty million dollars, the Mexican government was happy to lease two thousand acres of useless jungle to a telecommunications research lab financed by petro dollars from abroad. The promise of future jobs and potential revenue left the Mexican government to pay little attention given the other crisis they were now facing. The few Mexican officials who sought entry to the burgeoning facility in the jungle were either paid off or disappeared. Despite U.S. concerns, not all of the problems confronting them from Mexico were on their immediate southern border.
The earth survived in a veritable shooting gallery of rocks
streaming through space at tens of thousands of miles per hour. Some of these objects were the size of large cities. A few were the size of states. Conservative estimates placed the number of possible extinction-level objects in near-Earth orbit at more than one thousand, of which to date scientists had located and identified only a small percentage.
The potential for destruction was catastrophic. Major collisions with large asteroids were known to have caused extinction-level events in the planet’s history. It was, in fact, an irony to Leffort that the antenna array erected in the Yucatán jungle and the building from which he was now working sat less than a hundred miles from the center of one of the largest asteroid strikes in global history.
Sixty-five million years ago, the Chicxulub asteroid, estimated to be six miles in diameter, slammed into the western Caribbean just a few miles off the Yucatán coast. It created a crater one hundred and ten miles in diameter, believed to be the largest impact structure on the face of the earth. The heat generated by the collision vaporized entire forests. It ejected mountains of material into space. Much of this would have ignited into incandescence upon reentry into the atmosphere, superheating the air and setting off monumental wildfires around the globe.
The Chicxulub impactor was believed to have buried itself in the earth’s crust in less than a second, creating seismic sea waves thousands of feet high. It is also believed that it was the effects of this asteroid striking the earth that spelled extinction for the dinosaurs.
It was only natural that nations would deploy their science to find ways of warding off such future threats to man’s survival. Soon a proliferation of acronyms abounded—NEAR, NEAT, NEOSSat, and NEOwise and the Torino Scale—all created for measuring the size and potential for impact of each threat.
From there it was but a question of time before some enterprising soul saw the potential for arresting the threat only to transform it into history’s ultimate weapon. Harness an asteroid of the right size and composition, temper its velocity and guide it with precision, and your enemy could be wiped from the face of the earth as if swatted by the hand of God.
Leffort mused at the constantly changing state of the world and the narrow-minded vision of its “leaders” with their rigid timeworn concepts of geopolitics.
Decades earlier the United States had studied and dismissed the use of NEOs as potential weapons of mass destruction. The studies concluded that the kinetic energy stored in these missiles of nature far surpassed the destructive power of anything man-made, including the most devastating nuclear warheads. Yet they waddled in their own ignorance. They dismissed NEOs on grounds that they couldn’t be fashioned to fit the prevailing stratagem of the moment, the Cold War concept of MAD—Mutually Assured Destruction.
The defense experts operated on the assumption that the time needed to harness and hurl meteors and asteroids at selected targets on the surface of the earth, while scientifically possible, would cost too much and take too long to be a feasible and effective deterrent to those adversaries that already possessed nuclear arms.
They put the studies on the shelf to collect dust and waited. Since then the world had been turned upside down by the concept of asymmetrical warfare.
Acts of insurgency now used methods of attack and civilian terror no longer confined to conventional battlefields. The dread of nuclear-tipped missiles over Manhattan was replaced by the threat of dirty bombs or nuclear devices smuggled in the hold of a ship or on the back of a truck. The use of subnationals as proxies of terror to mask acts of war by sponsoring states became the norm. Rules of restraint based on deterrence, the old fear of massive retaliation, had gone the way of the goony bird.
In such a world, the veiled promise of nature’s own instruments of destruction could not go unnoticed for long. DARPA and the Defense Department dredged up the old studies and dusted them off. Suddenly they realized the risk. The science of steering objects in space was a known technology mastered by a growing number of states. Streaking fire across the sky, an iron asteroid sufficiently large to survive Earth’s atmosphere, whether by cataclysmic impact with Earth or by atmospheric burst, would deliver more death and destruction in a moment of time than any preemptive nuclear strike. And in the sign of the times, all of this could be carried out under cover of an unfathomable act of nature.
Chapter
Fifty-Two
Surprise came from the first large steel container up forward in the belly of the C-130. As the plane lifted off from the runway and began to climb out over the Atlantic, a hatch up on top suddenly popped open. Sarah heard it and looked up, but she didn’t see anything.
They were crouched on the floor against the side of the plane—Sarah, Herman, Bugsy, and Adin. A few seconds later a man appeared, looking down at them from over the edge of the container.
Bugsy barked at him and lunged to the end of his leash as Sarah struggled to hold him.
“Easy,” said Adin. He petted the dog and looked up. “It’s only Teo. I was hoping it would be you.” He glanced up at the man. “You can eat him later,” Adin told Bugsy.
“Who else would it be?” said the man.
“I could think of at least a half-dozen colonels, all of them younger than you,” said Adin.
“Yes, but none of them as good. It’s getting a little warm inside,” said the man. “Do you mind if we join you?”
“What if I said yes?” Adin smiled up at him.
“Then to hell with you.” Wearing military fatigues and combat boots, the man looked considerably older than Adin, maybe in his late forties or early fifties. He climbed down using the red cargo netting suspended from the inside wall of the plane. Regardless of his age he was quite fit, short, and stocky, his face tanned as if he’d lived his life on a golf course in Palm Springs. His balding forehead was etched with craggy lines and deep furrows. His most memorable feature was his beaming smile. “This the young lady you were telling me about?”
“What has he been saying?” said Sarah.
“Allow me to introduce you. Sarah Madriani, this old man is Teo Ben Rabin. Colonel Ben Rabin to some. But you can just call him Uncle Ben,” said Adin.
“Only behind my back,” said Ben Rabin.
“And do yourself a favor,” said Adin. “Don’t believe anything he says.”
“Nice to meet you.” Sarah smiled, nodded, and shook his hand.
“Teo, I’d like you to meet Herman Diggs.”
Ben Rabin stepped gingerly around the dog, keeping a little distance. “I like to keep all my fingers,” he said.
“Mr. Diggs is our navigator for this trip,” said Adin. “By force of character, you might say. He refused to tell us where we were going unless we took him along.”
“A man after my own heart,” said Ben Rabin. “Shalom. Welcome aboard.”
Herman nodded and shook his hand.
“Are you feeling all right?” said Ben Rabin. He was looking at Herman.
“I’m not great in airplanes,” said Herman. “Specially with the fuel tank and the fumes, sittin’ sideways like this.”
“You’re looking a little green around the gills,” said Ben Rabin. “You want, I will find you a seat up top with the flight crew. The air up there is a little better.”
“Might take you up on that,” said Herman.
“Give me a minute.”
Herman nodded.
“I take it he’s not really your uncle.” Sarah looked at Adin.
“Only in spirit,” he told her. “The colonel is a man with many nephews.”
Ben Rabin pounded on the side of the steel container. “You can come out now!” He yelled at the top of his voice. “The rest of my relatives.” He looked at Sarah and smiled. “We were beginning to wonder how long it was going to take before we got airborne. It is damn hot in there.”
“Makes you wonder what it was like in the Trojan Horse?” said Adin.
“Something like that.”
A few seconds later, men began to crawl out over the edge of the steel
container, all in camo-green battle fatigues and heavy boots.
“How many did you bring?” said Adin.
“One platoon,” said Ben Rabin. “Eighteen was all we could fit. Like sardines in a can.”
“What about the other container?” said Adin.
“Equipment. Ground transport, one Desert Raider with a mounted 105-millimeter recoilless rifle, and one equipment trailer. The trailer will have to do double duty,” said Ben Rabin. “Transport both men and equipment. Do we know how far we’re going to have to go once we hit the ground?”
“I don’t know anything yet. We’ll have to talk to Mr. Diggs.” Adin turned and looked at Herman.
“What are you expecting, World War III?” said Herman.
“Could very well be,” said Ben Rabin. “Do you have any idea what we’re going to be dealing with when we get down there?”
“Not a clue,” said Herman.
“You do know where we’re going?” said Adin.
“A general idea,” said Herman.
Adin gave Ben Rabin a look as if to say “the blind leading the blind.”
By now the soldiers were wandering up and down inside the belly of the plane, working on the two containers, pulling out equipment and arms, loaded backpacks, staging it all in the narrow aisle between the large fuel tank and the two metal containers. Most of the men appeared to be slightly older than the usual soldier, in their late twenties or early thirties, some of them sporting longer hair. Ben Rabin turned his attention to give them a hand.
“Who are they?” asked Herman.
“What do you mean? Oh, them. Just Israeli Defense Forces,” said Adin.
“Yeah, and I’m the Pied Piper,” said Herman.
“Wouldn’t mean anything to you if I told you,” said Adin.
“Try me.”
“Special forces,” said Adin.
“S-13?” said Herman.