The Angel was a much more refined aircraft than the original CL-282 design. The fuselage was lengthened and widened to accommodate the J57 engine. Dimensions were now 49.72 feet long with an 80.17-foot wingspan.
The XF-104's "T" tail was replaced by a conventional unit. The emphasis was on weight control — its empty weight was only 12,000 pounds. (This was equivalent to the X-16's fuel load!) The aluminum skin was only 0.02 inches thick and lacked the structural stiffeners of conventional aircraft.
Johnson said at one point that he would "trade his grandma" for several pounds of weight reduction. (After this, every pound saved was a "grandma.") The tail was held on with three five-eighth-inch bolts. The Angel was stressed for only plus-1.8 gs and negative-0.8 gs in some flight conditions.
The cockpit, unlike the original CL-282 design, was pressurized. It was very cramped, especially as the pilot had to wear a partial-pressure suit for protection in case pressurization was lost. Rather than a stick, it had a large control yoke, like that on a transport. On the instrument panel was a driftsight-sextant. This allowed views of ground landmarks (and any fighters trying to intercept the plane), and of the sun and stars for navigation.
There was no ejector seat.
Behind the cockpit was the pressurized "Q-bay" which held the camera.
Three camera systems were originally developed for use on the Angel. The "A camera" was a set of three twenty-four-inch focal-length cameras, one vertical and two oblique. The "B camera" had a thirty-six-inch focal-length lens. The lens assembly pivoted to provide panoramic coverage. The camera was loaded with two rolls of film, each nine inches wide and five thousand feet long. Both rolls were exposed during each shot, forming an eighteen-by-eighteen-inch frame. As each shot was taken, the B camera moved forward slightly to compensate for the aircraft's angular motion over the ground. The resolution of the camera was two and a half feet from 70,000 feet. The B camera was the embodiment of Dr. Land's vision. The "C camera" used a sixty-six-inch focal-length lens and was to be used for high-resolution technical intelligence.[36]
Unlike the original CL-282, this plane was fitted with bicycle landing gear. Two "pogos" kept the wings level during taxi and takeoff. When the plane left the ground, the pogos fell out. When the plane landed, the pilot would have to keep the wings level through touchdown and rollout. When it came to a stop, the plane would tip and come to rest on one wing-tip skid.
The long narrow wings were the key to the Angel's high-altitude capability. Between its high-aspect ratio, very high camber, and very low wing loading, the aircraft was given the best possible lift-drag ratio for cruise efficiency. Because the wings were shorter than those of the RB-57D or X-16, they were not affected by "aeroelastic divergence," a twisting of the wings caused by aerodynamic forces. (The RB-57's operational life was cut short by structural failures caused by this problem.) The long wings did create a particular problem — they generated a strong pitch force, which had to be counteracted by the tail. This was particularly evident at high speeds and in turbulence. Rather than beefing up the tail structure (and adding weight), the ailerons and flaps would be raised slightly. This moved the wing's center of lift slightly and reduced wing and tail loading. (The procedure, called "gust control," was later used on airliners.) The fuel carried in the wing tanks was also special. The Angel would be exposed to negative-95-degree Fahrenheit (F) temperatures for eight hours or more. Normal JP-4 jet fuel would freeze. Shell Oil developed a special kerosene that would not freeze or evaporate in the extreme cold and low pressure at 70,000-plus feet. The military called it JP-TS (for thermally stable), while Lockheed referred to it as LF-1A. The //stood for "lighter fluid," since it smelled very similar to that found in a cigarette lighter.
By the end of 1954, the aircraft's design was set and construction of two prototypes could begin. Johnson selected Lockheed chief test pilot Anthony W. LeVier to make the initial flights. LeVier had worked on earlier Lockheed projects such as the P-38, P-80, and XF-104. In one harrowing accident, he had bailed out of a P-80 that was cut in half by a disintegrating engine. LeVier was called into Johnson's office and asked if he wanted to fly a new airplane. LeVier asked, "What plane?" Johnson responded, "I can't tell you unless you agree to fly it!" LeVier agreed and was told his first job was to find a secret test site for the plane.[37]
THE RANCH
With the extreme secrecy enveloping the project, the flight test and pilot training programs could not be conducted at Edwards Air Force Base or Lockheed's Palmdale facility. LeVier spent several days plotting a route to visit potential test sites in the deserts of southern California, Nevada, and Arizona. Scattered throughout the area are dry lake beds, ranging from less than a mile to several miles in diameter. Johnson asked him to look for a site that was "remote, but not too remote."
The search was conducted under the same extreme security as the rest of the project. LeVier and Dorsey Kammerer, the Skunk Works foreman, told everyone they were going on a hunting trip to Mexico; they even dressed the part when they took off in the Lockheed Flight Test Department's Beech V-tail Bonanza. Once out of sight of the factory, they changed course and headed toward the desert. For the next two weeks, LeVier and Kammerer spent their "vacation" photographing and mapping possible sites.[38]
In all, fifty possible sites were looked at. When Richard M. Bissell Jr., the CIA official selected to direct the program, and his air force liaison, Col. Osmond J. "Ozzie" Ritland, reviewed the list, they felt none of them met the security requirements. Then Ritland recalled "a little X-shaped field" in Nevada he had flown over many times while involved with U.S. nuclear testing. He offered to show it to Bissell and Johnson.
Soon after, LeVier flew Johnson, Ritland, and Bissell out for an on-site inspection. They did not have a clearance, so flew in at low altitude. Ritland said later, "We flew over it and within thirty seconds, you knew that was the place… it was right by a [dry] lake. Man alive, we looked at that lake, and we all looked at each other. It was another Edwards, so we wheeled around, landed on that lake, taxied up to one end of it, and Kelly Johnson said, "We'll put it right here, that's the hangar."[39] Bissell recalled later that it was "a perfect natural landing field… as smooth as a billiard table without anything being done to it."[40] Johnson used a compass to lay out the direction of the first runway, kicking away spent shell cases as he walked.
The place was called "Groom Lake."
Groom Lake is square-shaped, about three by four miles in size. It is on the floor of Emigrant Valley in Lincoln County, Nevada. Like all such dry lakes (including Edwards Air Force Base), Groom Lake was formed by water runoff. (Yearly rainfall was only four and a third inches.) The sediment flows to low areas, where it settles. The 100-degree F heat of summer dries the mud, leaving a flat, hard surface. In winter, temperatures drop to below freezing and light snowfall can dust the area. Strong afternoon winds often hit the area, although thunderstorms are rare. (One such storm would have an important part in Groom Lake's history, however.) During World War II, Groom Lake was used as a gunnery range. The lake bed was littered with empty shell cases and debris from target practice.
An airstrip was built on the east side of the lake bed. With the end of the war, the site was abandoned. By early 1955, the runway had reverted to sand and was unusable. Ritland said it "had got hummocks and sagebrush that wouldn't quit."
Groom Lake is cut off from the surrounding desert by the Timphute Range to the west, the Groom Mountains to the east, and the Papoose Range to the south. A few miles to the north is the 9,380-foot summit of Bald Mountain. The mountains loom like walls above the lake bed. The only nearby towns are "wide spots in the road" such as Rachel, Nevada. Las Vegas is nearly 100 miles to the southwest. To the west, just over the surrounding hills from Groom Lake, is Nellis Air Force Base and the Atomic Energy Commission's (AEC) Nuclear Test Site. It was the perfect place to hide a secret. The only access to the site was by air. The AEC's security restrictions would cut off both ground and air access, effec
tively protecting the site and its secrets. The Groom Lake site was approved, and the restricted area around the nuclear test site was extended to encompass it.
A small but complete flight test center would have to be created out in the desert. To hide Lockheed's involvement, "CLJ" (Johnson's initials) became its company name. The facility plans were given to a contractor who had the special license needed to build at the nuclear test site. This led to a problem — when the contractor asked for bids, he was told to watch out for "this CLJ outfit" because it had no Dun and Bradstreet credit rating.[41]
Throughout the summer of 1955, with temperatures over 100 degrees F, the crews worked to build the test center. They had no idea what the facility would be used for. The site included a 5,000-foot tarmac runway, two hangars, a small tower, several water wells, fuel storage tanks, a mess hall, a road, plus some temporary buildings and trailers for living quarters. These were located on the southwestern edge of the lake bed. Total cost was $800,000. The site was isolated, rugged, barren, and lacking in personal comfort. This was more than made up for by a pioneering spirit.
In early July 1955, LeVier was told to fly out to the site. This was his first visit since the first survey with Johnson, Ritland, and Bissell. He was stunned by the changes. His first action was to get the lake bed ready. As at Edwards Air Force Base, the lake bed would be used for takeoffs and landings. LeVier and fellow Lockheed test pilot Bob Matye spent nearly a month driving around the lake bed in a pickup truck cleaning up spent shell cases, rocks, brush, and even half a steamroller.[42] Flying over a flat surface like the lake bed, it was very difficult to judge height, so LeVier also wanted to paint markings for four three-mile runways on the lake bed.
Johnson turned down the proposal when told it would cost $450. The money was not in the budget.[43]
By late July 1955, the facility was completed. In order to recruit people, Johnson dubbed the site "Paradise Ranch." Years later, he admitted, "It was kind of a dirty trick since Paradise Ranch was a dry lake where quarter-inch rock blew around every afternoon." Soon, the name was shortened to "the Ranch."
THE ANGEL TESTS ITS WINGS
By this time, the first prototype was ready. "Article 341," as it was designated, was disassembled, and the fuselage and wings were wrapped in fabric and loaded on two carts. At 4:30 A.M. on July 24, 1955, they were loaded on a C-124 transport for the flight to Groom Lake. The Skunk Works crew would follow in a C-47. There was a delay — the local commander refused permission for the C-124 to land on the runway at Groom Lake, because the wheels of the heavily loaded plane would break through the thin surface. He wanted it to land at another base, then have the prototype moved to Groom Lake over bad dirt roads. This would delay the first flight by a week, however. Johnson argued that they could let most of the air out of the C-124's tires, reducing the surface pressure. When the local commander refused, Johnson called Washington to get approval to override him.
Permission was given, the tire pressure was reduced, and Article 341 was successfully flown to Groom Lake.[44]
Once it was reassembled, Article 341 was towed out of the hangar by a pickup truck and underwent engine run-up tests. It was in a bare-metal finish — no U.S. star and bar insignia, no "USAF," not even a civilian "N-number" registration.
Article 341 was ready for its first taxi tests on August 1, 1955. The first run, to a speed of 50 knots, was successful, even though the brakes were found to be ineffective. The second taxi run reached 70 knots. LeVier cut the throttle to idle, then realized he was some twenty feet in the air. Article 341 continued to fly for over a quarter of a mile. LeVier tried to land the plane, but it was impossible to judge his height above the lake bed. The plane contacted the lake bed in a 10-degree bank — the left wing-tip skid hit first, then the left pogo, main gear, and finally, the tail wheel. The landing was hard, and the plane bounced back into the air. The second landing was much smoother, and LeVier was able to regain control. As the plane rolled to a stop, the right tire blew and caught fire. This was extinguished in short order. Despite the mishap, no major damage was done, and repairs were completed the next day. LeVier, in his pilot report, said, "The lake bed during this run was absolutely unsatisfactory from the standpoint of being able to distinguish distance or height."
While Article 341 was being repaired, LeVier and Matye put crude markings on the lake bed to make a north-south runway. The following day, August 2, two more taxi runs were made. LeVier pushed the control wheel forward to keep the plane on the ground. The runs uncovered a few minor problems: poor braking, reflections on the windshield, and the need for a sunshade to keep the cockpit from becoming too hot. LeVier wrote in his pilot report, "I believe the aircraft is ready for flight."
Article 341 's first flight was set for August 4. It was planned for a maximum speed of 150 knots and an altitude of 8,000 feet. The aircraft's low-speed control would be checked. The plane would stay close to the lake bed.
The weather for the first flight was threatening, with thunderstorms near Groom Lake. The C-47 made a weather check. At 2:28 P.M. the C-47 landed and the flight was allowed to proceed. At 2:57 P.M. the T-33 chase plane took off and preparations began to start Article 341's engine.
Then began a series of events that turned the first flight into a cliff-hanger. At 3:06 P.M. LeVier twice tried to start the plane's engine, but his attempts failed. At 3:12 P.M. the T-33 landed for refueling. The fuel was not immediately available, and the T-33 did not take off again until 3:46 P.M. At 3:51 P.M. LeVier was finally able to start the engine. During the delay, the wind had shifted and LeVier had to reposition the aircraft.
Finally, at 3:55 P.M., nearly an hour late, Article 341 began its takeoff roll. It lifted off the lake bed thirty seconds later. LeVier made a circle of the lake bed while the landing gear retracted. He operated the speed brakes, then made six stall checks. LeVier was very satisfied, radioing at one point, "Flies like a baby buggy." LeVier then started his descent for the landing at 4:10 P.M. At this point, as he wrote in his postflight comments, "It wasn't difficult to realize that this was no ordinary aircraft. With the power lever in almost idle, the wing flaps partially down and dive brakes extended, the aircraft had a very flat glide and a long float on flaring out."
LeVier and Johnson had earlier discussed the best landing technique.
Johnson thought the forward landing gear should touch down first, to avoid stalling the wings. LeVier believed he should make a two-point landing. He had talked with B-47 pilots who warned that the aircraft would "porpoise"
if it landed nose wheel first. At 4:20 P.M. LeVier made his first landing try, but he said, "attempting to touch the main wheels first while pushing on the control wheel to lower the nose only served to produce a most erratic and uncontrollable porpoise. I immediately applied more power and took off."
Over the next few minutes, LeVier made three more attempts to land nose gear first. Each time, the attempt failed.
Another factor was the weather. A few minutes after takeoff, the thunderstorms moved into the area and light rain began to fall. As LeVier lined up for his first attempt, he radioed, "Hardly enough speed to take water off the windshield." The rain squalls were getting closer as LeVier made his fourth landing attempt. This time, LeVier stalled the aircraft just above the ground, and it touched down on both gears in a perfect landing. As the plane rolled out at 55–60 knots, the pogos, which had been locked in place, were still off the ground. LeVier used the gust control to reduce lift. Article 341 came to a stop at 4:34 P.M.[45]
As LeVier climbed out of Article 341, he saw Johnson, who had been flying as a passenger in the T-33. LeVier jokingly "saluted" him with an obscene gesture and accused Johnson of trying to kill him. Johnson responded with the same gesture and a loud, "You too," which was heard by the ground crew. LeVier answered back, "You did." So was born the "U-2" name. Ten minutes later, the rain squalls flooded Groom Lake with two inches of water. The Lockheed personnel celebrated that evening with beer-drinking and arm-wrestl
ing contests.
The following day, LeVier made a second, short flight to check out the landing technique. The plane's official first flight took place on August 8.
On hand were Bissell and other government officials. LeVier made a low pass, then zoomed up to 30,000 feet. The T-33 chase plane, with Matye at the controls, struggled to follow. At the end of the hour-long flight, LeVier made another low pass and landed.[46]
LeVier made a total of twenty flights, which completed the Phase 1 testing. These flights took the aircraft to its maximum speed of Mach 0.84, an altitude of 50,000 feet, and a successful dead-stick landing. LeVier said the plane "went up like a homesick angel." With the Phase 1 testing completed, LeVier left to join the F-104 program.[47]
Lockheed test pilots Bob Matye and Ray Goudy replaced LeVier. They expanded the altitude envelope to 74,500 feet. On three occasions, Matye broke the world altitude record of 65,890 feet set on August 29, 1955, by Wing Commander Walter Gibb in an English Electric Canberra. The Canberra record had made headlines; there was no announcement from Groom Lake. On the third flight, Matye suffered an engine flameout. This qualified the pressure suit emergency oxygen system and emergency descent procedures.[48]
Despite these successes, Matye's flameout indicated a major problem with the J57 engine. When the engine flamed out, the aircraft would have to descend to 35,000 feet before the pilot could attempt a relight. On test flights, this was no problem. On an overflight, however, the plane would be helpless against MiGs. Bissell said later, "Plainly, unless this problem could be licked, it would be altogether too hazardous to fly this aircraft over unfriendly territory." The early J57-37 engines also dumped oil into the cockpit pressurization system. This left an oily film on the windshield. The test pilots had to carry a swab on a stick to clean it. Pratt and Whitney made a number of small fixes, but with only limited success. It would require a new version, the J57-31, before the flameout problem was solved. And this would not be accomplished until early 1956.
Dark Eagles: A History of the Top Secret U.S. Aircraft Page 4