Book Read Free

Tom Zoellner

Page 16

by Uranium - Rock That Shaped the World


  Meanwhile, in Pakistan, President Pervez Musharraf was under pressure to do something about his rogue weapons scientist. Khan had already been fired as head of the research laboratories, and Musharraf had no choice but to place him under permanent house arrest. Knowing that he was handling an icon, though, he offered Khan a conditional pardon and refused to allow foreign intelligence agents to interrogate him about the activities of the network. Investigators were left to chase middle players. After Gieges was arrested, he complained he was a victim of atomic hypocrisy—much the same argument that Khan had made.

  “What qualifies the Americans to have in excess of ten thousand nuclear explosive devices just waiting for someone to push the button?” Gieges wondered. “What qualifies the Americans to have this and not others?”

  None of the old defiance was evident in a speech Khan made on national television following his arrest. It was a statement he had almost certainly been forced to make, and it was delivered in English, not Urdu, suggesting that the message was aimed at the West and not for a home audience. He said he was sorry, but his regret was not about the emporiums he had run from his laboratories. He seemed more concerned that the shield of uranium he had erected for his country had been sullied.

  “It is with the deepest sense of sorrow, anguish, and regret that I have chosen to appear before you in order to atone for some of the anguish and pain that has been suffered by the people of Pakistan . . . ,” he began. “I am aware of the vital criticality of Pakistan’s nuclear program to our national security and the national pride and emotions which it generates in your hearts.”

  There is an institution that is supposed to break up a national love affair with uranium, and it can be found on the mealy plains south of Vienna, among wheat fields and birch trees. A rectangle of barbed wire surrounds a bland industrial park south of the village of Seibersdorf, and to get in, you have to pass through an airlocklike chamber in the guard station that fronts the highway. Inside the perimeter is an unremarkable two-story building of red bricks and tin trim. It was built in the late 1970s and would look at home atop a Wisconsin paper mill. There is no sign outside.

  This is the home of the Safeguards Analytical Laboratory of the International Atomic Energy Agency, and its employees are responsible for making sure that every country that signed the nonproliferation treaty is not squirreling away uranium in a warehouse or trying to siphon off plutonium. The work of these nuclear inspectors can move global events, even when they find nothing of value. Saddam Hussein’s initial refusal to cooperate with this laboratory helped lay the foundations for the U.S. war with Iraq, although he had given up his pursuit of uranium in the early 1990s.

  I went there in January 2007 to meet the chief of the facility, a trim and earnest man in his mid-thirties named Christian Schmitzer, who took me through another guard checkpoint and into his office to explain exactly how an atomic crime can be detected.

  “This whole regime hinges on mistrust,” he told me. “When we go into a reactor, we’re saying, ‘We don’t trust you.’ Sometimes this causes tensions.”

  Inspectors travel on a rotational basis to places such as Argentina, Japan, and Sweden. They are led into the plant by (usually) friendly executives who offer them tea or coffee and then stand back while the inspectors put on latex gloves and produce a set of cotton balls as big as oranges. These are wiped across the pipe joints and manifolds, where traces of uranium dust and other process materials are prone to leak. The inspectors also make swipes inside the employee locker room, which yields the best samples of any room in the facility. People always shake their jumpsuits and lab coats when they change clothes, and the dust is everywhere.

  The cotton balls are placed in plastic bags. Fuel pellets are counted. The inventory books are scrutinized, as are the suppliers’ delivery records, and the two must match exactly. The air is checked with a gamma-ray spectrometer and, occasionally, a small patch of dirt from the plant’s ground is dug up and bagged. A water sample might also be taken. If the facility happens to be an enrichment plant, the inspectors will go tap on the metal kegs of uranium hexafluoride with a hammer. Empty kegs make a distinctive gonging sound, and the approximate gas level must be matched with what the plant has reported. There are handshakes and good-byes. The inspectors mail off their “hot swipes” and dirt samples via an international parcel service.

  Once back in the lab in Austria, the materials are assigned a random code so that nobody except the directors knows which nation they came from. They are taken into the “clean room,” where everyone must wear fabric caps and overshoes. The cotton is scrutinized for any trace of U-235 with electronic microscopes and spectrometers that can resolve down to the femtogram, which is a unit of weight a millionth of a millionth lighter than a paper clip.

  Enriched uranium has a distinct isotopic signature. The technicians in the lab know what uranium is supposed to look like in a power plant. If anybody was trying to turn it into weapons, the signs would be all over the place, like a murdered corpse that won’t stop bleeding. “Even if they were trying to clean it up, they never could,” said Schmitzer.

  There are three basic ways in which a nation (or a rogue faction within) might try to pilfer some fissile material to make a bomb. The first is to simply steal it outright. This is apparently what happened with the uranium rods in the Democratic Republic of the Congo that later turned up in a Mafia deal in Italy. Known as a gross defect, this is the easiest discrepancy to see. The second way involves siphoning off a large portion of material, such as a few cubic meters of uranium hexafluoride, while leaving the rest in place. This is known as a partial defect. The last method is what an embezzler might call the salami technique. You shave a tiny bit of uranium off a large quantity of deliveries, like ultrathin slices from a salami, over time and hope nobody notices. This is known as a bias defect and would still be difficult to pull off. Both the suppliers and the facility would have to rig the paperwork.

  A major weakness in the Safeguards lab’s remit was exposed in 1992 after Saddam Hussein refused to allow inspectors into his suspected nuclear plants. Prior to that point, the primary job of inspectors was to check declared inventories of uranium against the actual levels, taking samples only from what the host nation claimed was there. But Iraq had never declared its program. The expected paperwork, therefore, didn’t exist. Inspectors expanded their brief to include environmental sampling and forensics to determine the extent of programs that were officially secret, and to develop protocols for entering places where they were not welcome. It would not be exaggerating to say that what happens in this two-story brick building can trigger a war.

  “I don’t know of any lab that analyzes substances with more scrutiny than we do,” said Schmitzer. “We have to consider what we do very hard. We must not screw up.”

  He repeated this, to make sure I understood.

  “We must not screw up. There will be major political implications.”

  His police work is only as good as his access. Schmitzer’s agency is powerless to learn anything about the bomb-making apparatuses in Israel, India, and Pakistan because those nations have never signed the nonproliferation treaty and have no reason to admit IAEA inspectors.

  A fourth nation is a wild card. Having done brisk business with A. Q. Khan, North Korea withdrew from the treaty in 2003, citing “grave encroachment upon our country’s sovereignty and the dignity of the nation.” High-level pressure is necessary in cases like this. All the inspectors can do from Austria is to stay vigilant of those countries still inside the framework that might be buying black-market uranium or centrifuges.

  Apocalypse—or a small-bore version of it—is also not a concept that belongs exclusively to governments. The fears of Western intelligence operatives also focus on terrorist groups or religious zealots who may find a dealer more willing than A. Q. Khan to sell them tools of fissile destruction. They would, of course, be immune from the prying eyes of the IAEA. And some movements might come from unexpected
places, the kind of thing that no rational model can predict.

  One example of this was a meditation group started in a Tokyo apartment in 1984 by a former yoga instructor. He called himself Shoko Asahara and taught a blend of traditional Buddhist enlightenment, mingled with the millennial imagery in the book of Revelation. He was a charismatic man, and the circle soon became trendy among young university graduates seeking a spiritual side to their lives. Asahara promised an antidote to what he called the “emptiness” of modern life. The group called itself Aum Shinrikyo—aum for the traditional meditative chant, the Hindi word for “universe,” and shinrikyo, which translates as the “truth of the universe.”

  Asahara recruited younger members with his own line of graphic novels, rendered in the popular Japanese styles of manga and anime. They were quirky and fun, usually depicting spaceships and futurist gadgets operated by heroic characters fighting dark conspiracies and looking for the secret of the universe. William L. Laurence of the New York Times, who had wanted to fly an airplane to Mars, might have been intrigued with some of the more benign trappings of this group, particularly the emphasis on science and hidden meanings of life.

  The teachings got weirder. One of the comic books featured a character who walked into a room and said, “My guru, the god Shiva suddenly said to me, ‘Now is the time described in the book of Revelation; receive the message and start Aum’s salvation work.”

  The exact nature of this task soon became clear. Asahara believed that he was destined to trigger a mighty global confrontation between good and evil, after which history would come to a close. Japan itself must suffer “many Hiroshimas,” he taught, which would cause the superpowers to destroy the entire world. Killing innocent people was not a sin, but a blessing, because the victims would be released from the earthly cycle and bring more blessings to those who had murdered them. (It was a theology not unlike that of the Thugee cult of nineteenth-century India, whose members befriended lone travelers and ritually strangled them with a yellow sash.)

  Asahara’s chosen tool was uranium. He sent a team of senior associates to Western Australia to buy a piece of isolated land where the mineral was known to occur naturally. They paid nearly half a million dollars for a sheep ranch near the settlement of Banjawarn, where they said they were conducting “experiments for the benefit of mankind.” The seed money had been raised by donations from new members (as well as the sale of Asahara’s blood to the faithful—he charged $12,000 per thimbleful). The cult took out mining licenses in the names of two shell companies, Clarity Investments and Mahapoysa Australia, and began to dig. An Australian geologist was consulted about the feasibility of bypassing national export laws and quietly transporting the ore by ship to Japan. Computer-savvy members also hacked into government databases to steal information on the enrichment process. By this time, the cult had become popular enough to attract upward of ten thousand members.

  The doomsday plans hit a snag in 1993 when members tried to carry generators, picks, gas masks, and hydrochloric acid (in bottles marked HAND SOAP) on board a commercial airline flight into Perth. Authorities charged two men with carrying dangerous goods on an airplane, but released them. The sheep ranch yielded a small amount of uranium, which the cult had planned to enrich with the help of nuclear scientists recruited from Russia. These experts were later described as “second rate” by investigators, but it hardly mattered because the cult had managed to mine only a small amount of uranium ore. There was not nearly enough for a weapon.

  Asahara was growing impatient and depressed. He had predicted the end of the world would commence in 1995, and the carnage had to begin before then or he would risk embarrassment. He told his members to test sarin gas on some of the sheep on the Australian ranch. Authorities later found a field teeming with animal bones.

  Sarin is an odorless nerve agent that hangs thick in the air and causes violent spasms and death, a reaction not unlike that of a cockroach upon being sprayed by pesticide. It was first formulated, but not used, by Nazi scientists during World War II. A single drop is powerful enough to kill a healthy adult. On March 20, 1995, five teams of two men each descended into the subway stations at the heart of Tokyo and boarded separate trains. They carried bags full of newspapers soaked with about a liter of homemade sarin. At approximately 8 a.m., they punctured the bags with the sharpened tips of their umbrellas and ran away. Twelve people died and more than a thousand were hospitalized.

  Asahara issued a press release denying responsibility for the attack—“We are Buddhists! We do not kill living beings”—but when police went to question him, they found him hiding in a crawl space at his retreat near the base of Mount Fuji. He was put on trial, convicted of murder, and sentenced to be hanged.

  Had there been enough uranium, and time, there can be little doubt which weapon would have better suited his purposes. “Armageddon will occur at the end of this century,” he once exulted to his followers. The title of one of his tracts was more specific: “A Doom Is Nearing the Land of the Rising Sun.”

  5

  TWO RUSHES

  Everything on the earth was once in the earth. Our modern world was cast and shaped out of compound arrangements of iron, silicon, copper, and carbon and more than ninety other elements. There is nothing physical here—not a single object—that cannot be reduced to one or more elements of the periodic table that once lay quiescent in the earth’s crust. Mining is not the oldest profession known to man, but it is the mark of a rising civilization. Without minerals, there can be no metal, no tools, no energy, no war.

  This was never truer than with uranium, the heaviest natural element, which suddenly demonstrated the power to unmake a civilization. In the middle of the twentieth century, the security of the superpowers depended on a metal that had bubbled upward long before man arrived on the scene. And now there was a race to dominate the chthonic element, wherever it lay.

  There were two uranium rushes on opposite sides of the Atlantic Ocean in the 1950s. One was spurred by the government of the Soviet Union. Although the nation was officially Socialist, its drive for uranium was more dependent on free-market principles than its organizers would admit. The other rush was encouraged by the officially capitalist government of the United States. Its quest for uranium, however, relied more upon socialist concepts than its leaders wanted to discuss. And both programs left a trail of environmental and human wreckage whose effects would linger into the next century.

  Both of these efforts were made in the name of atomic weapons, an ultramodern technology that happened to depend on a very old enterprise, cruder and more ancient to man even than farming: You break into the earth by force and hope to find a treasure.

  The last true mineral rush in the American West began in March 1951, when the Atomic Energy Commission announced it would pay grossly inflated prices for uranium, even offering a $10,000 bonus to anybody who could develop a productive mine. It also handed out guidebooks, built supply roads, constructed ore-buying mills, and made geology reports available to anybody who had the pluck or the greed to move out to the desert and help develop a source of uranium in the American heartland in case the rail-and-sea link to Shinkolobwe was cut off.

  Thousands of Americans heeded the call and rushed to the canyon country of the Southwest to look for trees that had died a hundred million years ago. The American desert had been swampy and tropical in the Jurassic era; the trees bore bizarre and riotous plumages whose green fibers were replaced almost atom for atom by the liquid uranium solutions rising up through the mudstone like a subterranean fog. The trees soaked up the uranium and lay there entombed in the innards of mesas for more than 150 million years while species above rose and reproduced and fought and fell. The inland sea evaporated and the salt domes began to wither in strange patterns, leaving behind a skeleton jumble of canyons, washes, natural amphitheaters, soaring cliffs stained dark with malachite, and sandstone pillars that resemble skyscrapers or tombstones in the moonlight, some concealing uranium-soaked
logs like gold needles in their inner folds. In the shaded alcoves of some of the cliffs, a race of Indians called the Anasazi had left paintings of gazelles and misshapen humans; the people themselves had vanished in the thirteenth century.

  Among the first white men to venture into the drainage system of the haunted region known as the Colorado Plateau had been the Civil War veteran and geologist John Wesley Powell, who in 1869 found “a whole land of naked rock with giant forms carved on it; cathedral-shaped buttes towering hundreds or thousands of feet, cliffs that cannot be scaled, and canyon walls that shrink the river into insignificance, with vast hollow domes and tall pinnacles and shafts set on the verge overhead and all highly colored—buff, gray, red, brown, chocolate.” Winter frost had crept between the grains of the sandstone pillars and pried them apart grain by grain: a pulse of freezing and melting over tens of millions of years. The middle sections of a monolith were the weakest, and some of the centers flaked away and left a hole; these formations were called arches, and the region had more than three thousand of them among the hoodoos and hogbacks in the labyrinthine canyons radiating from the valley of the Colorado River, where a town called Moab was a cross-hatching of tidy New England rationality in a chimerical landscape.

  The Mormon church president Brigham Young had ordered a few dozen families to settle the spot in 1869. He envisioned it as a beachhead for the Latter-day Saints in one of the wilder parts of southern Utah, but their hand-built fort proved vulnerable to attacks from nearby Paiute Indians, and Young quickly recalled the mission. Those first settlers didn’t think much of the region, in any case. “Good for nothing, except to hold the world together,” complained one. The valley was resettled in the next decade by cattle ranchers migrating over the border from Colorado who named their new postal station Moab, after a figure from the biblical book of Genesis.

 

‹ Prev