Book Read Free

The Quest: Energy, Security, and the Remaking of the Modern World

Page 48

by Daniel Yergin


  The most dramatic turnaround was in Germany. Three days after the accident, German Chancellor Merkel disavowed the nuclear option. She ordered the closing of seven nuclear power plants at least temporarily and withdrew her support for life extension for existing plants. The accident in Japan “had changed everything in Germany,” she said. “We all want to exit nuclear power as soon as possible and make the switch to supplying via renewable energy.”21 Several weeks later, her government made it official, ordering the closing of all the German nuclear plants by 2022.

  The European Union called for “stress tests” for all nuclear reactors. Other countries were more muted in their reactions. Britain said it would continue to allow work to move ahead on new nuclear plants. France reaffirmed its deep commitment to nuclear power but launched a wide-ranging safety check.

  China has the most aggressive nuclear-development program in the world. Following the accident, Beijing ordered a temporary suspension in nuclear project approvals. This strengthened central government authority over nuclear development. Beijing had already been concerned about safety and execution in the breakneck speed at which provinces were moving ahead. This will likely lead to a switch to more third-generation plants, which have more built-in safety features. Nevertheless, China is likely to remain on course to add as many as 60 to 70 new nuclear plants by 2020, which would give it a nuclear fleet rivaling that of the United States in size.

  In the United States, the Nuclear Regulatory Commission launched a safety review. But also in the weeks following the accident, the NRC extended the license of one nuclear plant and gave approval to the next stage of the development of the new nuclear units in Georgia. The Obama administration said it would continue to support nuclear power as it sought to incorporate lessons learned from the accident into regulations. But, within the industry, the disaster at Fukushima was causing a rethink of plans. A month after the accident, NRG, a large power-generating company, announced it was backing out of plans to build the largest nuclear project in the United States. “Look at our situation,” said David Crane, CEO of NRG. “We responded to the [federal] inducements back in 2005.” But, he continued, “you couldn’t move it forward. Nothing was going to happen except we were going to continue to spend money, month after month, which we have been doing for five years.”22

  Fukushima Daiichi demonstrated again the impact that a nuclear accident can have around the world. While it did not stop nuclear power in its tracks, “nuclear renaissance” is not a term likely to be heard in the years immediately ahead. One consequence will be to tilt development of new plants to more advanced designs, which incorporate passive safety features so that, for instance, cooling in an emergency would not require electricity from backup diesel generators. Many countries will still choose to include nuclear power in their energy mix for a variety of reasons—extending from zero carbon to energy independence, to the need for base-load power, to avoiding brownouts and blackouts with all the costs that they bring. But economics will also count, and in the United States, even before Fukushima Daiichi, something else was making the competitive prospects for nuclear power more challenging. Thus was the surge of inexpensive unconventional natural gas.

  POWER AND THE SHALE GALE

  Natural gas is the other obvious fuel choice. The breakthroughs in unconventional gas—specifically the shale gale—hold out the prospect that very large volumes will come to market at relatively low cost. That is changing the choices and calculations for electric power. John Rowe is the CEO of Exelon, which has the largest nuclear fleet in the country. But the arrival of shale gas has changed his calculations. “Inexpensive natural gas produces cheaper, clean electricity,” he said. “Cheap gas will get you if you bet against it.” This shift in perspective and expectations could lead to the building of a significant amount of new natural gas generation.23

  That possibility may remind some of the dash for gas in the late 1990s that ran right into the wall of tight supplies and rising prices and ended in distress and bankruptcies. But now the arrival of unconventional gas portends low prices and abundant supplies for many decades or even a century or more. What is also different from a decade ago is that there now exists an urgency to find lower-carbon solutions. Natural gas has also gained a new role—as the enabler of renewables, which are not always available when one wants them, or needs them most. Gas-fired generation would swing into action when the wind dies down and the sun doesn’t shine.

  BUT HOW MUCH?

  For all these reasons it is virtually inevitable that an increasing share of power generation will be fueled by natural gas. But how much? Some argue that the natural gas capacity that is already in place can be used to replace more carbon-intensive coal. A good part of that natural gas capacity needs to be kept available as a “peaking” or surge capacity to balance the overall power flows when demand increases, whether at six in the evening when people get home from work and switch everything on, or when a heat wave causes a sudden increase in air-conditioning use. Without this kind of flexibility, the stability of the overall transmission system would fall apart, leading to brownouts and potentially catastrophic blackouts.

  But what about building only natural gas facilities for new capacity? That is not likely. A utility is looking out many decades because of the large capital costs and because of the long life of a unit being built today. It is too risky to overcommit to one approach when technology, expected fuel costs, regulation, public opinion, and ranking of risks can change sometimes with abrupt speed. Diversification is the basic strategy for protecting against uncertainty and unexpected change. Moreover, while natural gas is lower in carbon, it is not carbon free. So natural gas can help reduce emissions substantially in the short and medium term, but even it could be under pressure in a couple of decades—unless carbon capture and storage works for natural gas as well as coal-fired generation.

  Still, gas usage in the U.S. power sector could increase substantially—and all the more so if power demand surges and if efficiency and renewables do not deliver on what is expected and utilities thus need to do something quickly. Gas-fired capacity is the most likely default option. This is true not only in the United States. It is also likely that natural gas–fired generation will grow significantly in Europe and in China and India if unconventional gas development succeeds in those countries.

  For many years to come, the power industry will be struggling with the question of what to build and what to shut down and its overarching quandary of fuel choice.

  But the decisions about fuel choice will be based not only on energy considerations but also on what has come to loom increasingly large—the climate agenda. It may seem that this concern about climate is a recent development. In fact, the focus on the atmosphere and how it works has been building for a very long time.

  PART FOUR

  Climate and Carbon

  21

  GLACIAL CHANGE

  On the morning of August 17, 1856, as the first sunlight revealed the pure white cone of a distant peak, John Tyndall left the hotel not far from the little resort town of Interlaken in Switzerland and set out by himself, making his way through a gorge toward a mountain. He finally reached his destination, the edge of a glacier. He was overcome by what he encountered—“a savage magnificence such as I had not previously beheld.” And then, sweating with great exertion but propelled by a growing rapture, he worked his way up onto the glacier itself. He was totally alone in the white emptiness.

  The sheer isolation on the ice stunned him. The silence was broken only intermittently, by the “gusts of the wind, or by the weird rattle of the debris which fell at intervals from the melting ice.” Suddenly, a giant cascading roar shook the sky. He froze with fear. He then realized what it was—an avalanche. He fixed his eyes “upon a white slope some thousands of feet above” and watched, transfixed, as the distant ice gave way and tumbled down. Once again, it was eerily quiet. But then, a moment later, another thundering avalanche shook the sky.1

&n
bsp; “A SENTIMENT OF WONDER”

  It had been seven years earlier, in 1849, that Tyndall had caught his first glimpse of a glacier. This occurred on his first visit to Switzerland, while he was still doing graduate studies in chemistry in Germany. But it was not until this trip in 1856 that Tyndall—by then already launched on a course that would eventually rank him as one of the great British scientists of the nineteenth century—came back to Switzerland for the specific purpose of studying glaciers. The consequences would ultimately have a decisive impact on the understanding of climate.

  Over those weeks that followed his arrival in Interlaken in 1856, Tyndall was overwhelmed again and again by what he beheld—the vastness of the ice, massive and monumental and deeply mysterious. He felt, he said, a “sentiment of wonder approaching to awe.” The glaciers captured his imagination. They also became an obsession, repeatedly drawing him back to Switzerland, to scale them, to explore them, to try to understand them—and to risk his life on them.

  Born in Ireland, the son of a constable and sometime shoemaker, Tyndall had originally come to England to work as a surveyor. But in 1848, distressed at his inability to get a proper scientific education in Britain, he took all his savings, such as they were, and set off for Germany to study with the chemist Robert Bunsen (of Bunsen burner fame). There he assimilated to his core what he called “the language of experiment.” Returning to Britain, he would gain recognition for his scientific work, and then go on to establish himself as a towering figure at the Royal Institution. Among his many accomplishments, he would provide the answer to the basic question of why the sky is blue.2

  Yet it was to Switzerland that he returned, sometimes almost yearly, to trek through the high altitudes, investigate the terrain, and, yoking on ropes, claw his way up the sides of mountains and on to his beloved glaciers. One year he almost ascended to the top of the Matterhorn, which would have made him the first man to surmount it. But then a sudden violent storm erupted, and his guides held him back from risking the last few hundred feet.

  Tyndall grasped something fundamental about the glaciers. They were not stationary. They were not frozen in time. They moved. He described one valley where he “observed upon the rocks and mountains the action of ancient glaciers which once filled the valley to the height of more than a thousand feet above its present level.” But now the glaciers were gone. That, thereafter, became one of his principal scientific preoccupations—how glaciers moved and migrated, how they grew and how they shrank.3

  Tyndall’s fascination with glaciers was rooted in the conviction held by a handful of nineteenth-century scientists that Swiss glaciers were the key to determining whether there had once been an Ice Age. And, if so, why it had ended? And, more frightening, might it come back? That in turn led Tyndall to ask questions about temperature and about that narrow belt of gases that girds the world—the atmosphere. His quest for answers would lead him to a fundamental breakthrough that would explain how the atmosphere works. For this Tyndall ranks as one of the key links in the chain of scientists stretching from the late eighteenth century until today who are responsible for providing the modern understanding of climate.

  But how did climate change go from a subject of scientific inquiry, which engaged a few scientists like Tyndall, which to one of the dominating energy issues of our age? That is a question profoundly important to the energy future.

  THE NEW ENERGY QUESTION

  Traditionally, energy issues have revolved around questions about price, availability, security—and pollution. The picture has been further complicated by the decisions governments make about the distribution of energy and money and access to resources, and by the risks of geopolitical clash over those resources.

  But now energy policies of all kinds are being reshaped by the issue of climate change and global warming. In response, some seek to transform, radically, the energy system in order to drastically reduce the amount of carbon dioxide and other greenhouse gases that are released when coal, oil, and natural gas—and wood and other combustibles—are burned to generate energy.

  This is an awesome challenge. For today over 80 percent of America’s energy—and that of the world—is supplied by the combustion of fossil fuels. Put simply: the industrial civilization that has evolved over two and a half centuries rests on a hydrocarbon foundation.

  THE RISE OF CARBON

  Carbon dioxide (CO2) and other greenhouse gases, like methane and nitrous oxide, are part of the 62-mile-high blanket of gases that make up the atmosphere. It is all that separates us from the emptiness of outer space. About 98 percent of the atmosphere is composed of just two elements, oxygen and nitrogen. While carbon dioxide and the other greenhouse gases are minute in their concentrations, they play an essential role. They are the balancers. The short-wave ultraviolet radiation of sunlight passes unhindered through all the atmospheric gases on the way to the earth’s surface. The earth in turn sends this heat back into the sky—but not in the same form in which it was received. For as the earth remits this heat and sends it back toward the sky, the planet’s mass transforms some of the short-wave radiation into longer-wave infrared radiation.

  Without CO2 and the other greenhouse gases, the departing infrared rays would flow back into the vastness of space, and the air would freeze at night, leaving the earth a cold and lifeless place. But owing to their molecular structure, the greenhouse gases, including water vapor, prevent that. They trap some of the heat represented in the form of infrared rays and redistribute it throughout the atmosphere. This balance of greenhouse gases keeps temperatures within a band, not too hot or too cold, and thus making the earth habitable, and more than that—hospitable to life.

  But balance is the issue that is at the heart of climate change. If the concentrations of CO2 and other greenhouse gases grow too large, too much heat will be retained. The world within the atmospheric greenhouse will grow too hot, with the possibility of violent change in climate, which will drastically affect life on the planet. A rise of just two or three degrees in the average temperature, it is feared, is all that is required to wreak havoc.

  The carbon levels are captured on graphs. They show a rising line, the elevated concentrations of carbon since the beginning of the Industrial Revolution. Most of the carbon in the atmosphere is the result of natural processes. But by burning fuels, humanity is generating an increasing proportion of carbon.

  Humanity’s share is growing for two basic reasons. The first is population. The world’s population has almost tripled since 1950. The equation is very simple: more people use more energy—which leads to more carbon emissions. The second is rising incomes. World GDP has also tripled since 1950, and energy use rises as incomes rise. People whose parents were cold and bundled up with extra garments now have heat. People whose parents sweltered in muggy tropical climates now have air-conditioning. People whose grandparents rarely left their towns or villages now travel around the world. Goods that were not even imagined two generations ago are now manufactured in one part of the planet and transported over oceans and continents to customers all over the globe. In order to make all that possible, carbon that was buried underground millions of years ago is unearthed, embedded in fuels and brought up to the earth’s surface, and then released into the atmosphere by combustion.

  There are other major sources of emissions. Large-scale deforestation—burning forests—releases carbon, while at the same time eliminating sinks (that is, the forests) that had served to capture and store carbon. Likewise, global poverty contributes to global warming, because poor people scrounge for biomass and burn it, sending black soot into the sky. The world’s herds of livestock release methane and nitrous oxide. Rice cultivation is another big source of methane. Yet by far, CO2 is the most significant greenhouse gas volumetrically.

  Scientists have taken to calling this release of CO2 the “experiment.” Once it was said in neutral tones—Tyndall’s “language of experiment”—and was shaped by curiosity, not by alarm. Now it is spoken in
dire tones. For these scientists warn that mankind is experimenting with the atmosphere in a manner that could irrevocably change the climate in potentially apocalyptic ways—melting the ice caps, burying great swaths of the world’s populated coastlines under water, transforming fertile areas into dying deserts, obliterating species, unleashing violent storms that cause great human suffering—along with devastating economic repercussions so vast that no insurance premium could possibly be large enough.

  Some scientists disagree. They say that the mechanisms are not obvious, that the climate has always changed, that most of the CO2 is released by natural processes, and that the rise of CO2 in the atmosphere may not be a cause of climate change but the result of other factors, such as solar turbulence or wobbles in the earth’s orbit. They are the minority.

  WHY NOT TOO HOT OR TOO COLD?

  The subject here is not weather, but rather climate. Weather is what happens day by day, the daily fluctuations reported each morning by the affable television weather anchors. Climate is something much bigger and more far-reaching. It is also much more abstract, not something that will be experienced on a daily basis, but something that unfolds over decades or even a century.

 

‹ Prev