Book Read Free

Darwin's Watch

Page 21

by Terry Pratchett


  Ridcully surveyed the throng, and said: `Here comes one from the fountain, by the look of it ... '

  Rincewind limped in, his face like thunder, water still streaming off him, with something grasped in his hands. Halfway across the hall a fish fell out of his robe, in obedience to the unbreakable laws of humour.

  He reached Ponder, and dropped the cannon ball on the floor.

  `Do you know how hard it is to shout underwater?' he demanded.

  `But I see you were successful, Rincewind,' said Ridcully.

  Rincewind looked up. All over the streaming lines, little pointy wizard symbols were appearing and disappearing.

  `No one told me it would fight back! It fought back! The cannon tried to load itself.'

  'Aha!' said Ridcully. `The enemy is revealed! We're nearly there! If they are breaking the-'

  'It was an Auditor,' said Rincewind, flatly. `It was trying to be invisible but I saw it outlined in the fog.'

  Ridcully sagged a little. A certain exuberance faded from his face. He said, `Oh, darn,' because an amusing misunderstanding in his youth had led him to believe that this was the worst possible word you could say.

  `We've found no evidence of them,' said Ponder Stibbons.

  `Here? Did we look? We wouldn't find any anyway, would we?'

  said Ridcully. `They'd show up as natural forces.'

  `But how could they exist here? All those things work by themselves here!'

  `Same way we did?' said Rincewind. `And they'll meddle with anything. You know them. And they really, really hate people ...'

  Auditors: personifications of things that have no personality that can be imagined. Wind and rain are animate, and thus have gods. But the personification of gravity, for example, is an Auditor or, rather Auditors. In universes that run on narrativium rather than automatic, they are the means by which the most basic things happen.

  Auditors are not only unimaginative, they find it impossible to imagine what imagination is.

  They are never found in groups of less than three, at least for long. In ones and twos they quickly develop personality traits that make them different, which to them is fatal. For an Auditor to have an opinion that differs from that of its colleagues is certain ... cessation. But while individual Auditors cannot hold an opinion (because that would make them individual), Auditors as a whole certainly can, and with grim certainty they hold that the multiverse would be a lot better off with no life in it. Life gets in the way, tends to be messy, acts unpredictably and reverses entropy.

  Life, they believe, is an unwanted by-product. The multiverse would be more reliable if there wasn't any. Unfortunately, there are rules. Gravity is not allowed to increase a millionfold and laminate all local life forms to the bedrock, highly desirable though that would appear to be. Simply mugging life forms merely walking, flying, swimming or oozing past would attract attention from higher authority, which Auditors dread.

  They are weak, not very clever and always afraid. But they can be subtle. And the wonderful thing about intelligent life, they have discovered, is that with some care it can be persuaded to destroy itself.

  SIXTEEN

  MANIFEST DESTINY

  THE WIZARDS ARE DISCOVERING THAT changing history is not so easy, even when you've got a time machine. The Auditors aren't helping, but history has its own metaphorical Auditor, often called `historical inertia'.

  Inertia is the innate tendency of moving objects to continue moving along much the same track, even if you try to divert them; it is a consequence of Newton's laws of motion. Historical inertia has a similar effect but a different cause: changing a single historical event, however important it may appear, may have no significant effect on the social context that directs the path of history.

  Imagine we've got a time machine, and go back to the past. Not too far, just to the assassination of Abraham Lincoln. In our history, the President lived till the following morning, so a tiny deflection of the assassin's bullet could make all the difference. So we arrange a small deflection, and he is hit but recovers, with no noticeable brain damage. He cuts a couple of appointments while he recuperates, and then he goes on to do ... what?

  We don't know anything about that new version of history.

  Or do we? Of course we do. He doesn't turn into a hippopotamus, for a start, or a Ford Model T Or disappear. He goes on being President Abraham Lincoln, hedged in by all the political expediencies and impossibilities that existed in our version of history and still exist in his.

  The counterfactual [1] scenario of a live Lincoln raises many questions. How much do you think being the American President is like driving a car, going where you want to? Or sitting in a train, observing the terrain that others drive you through?

  Somewhere in between, no doubt.

  Ordinarily, we don't have to think much about counterfactuals, precisely because they are contrary to fact. But mathematicians think about them all the time -'if what I think happens is wrong, what can I deduce that might prove it wrong?' Any consideration of phase spaces automatically gets tangled up in worlds of if. You don't really understand history unless you can take a stab at what might have happened if some major historical event had not occurred. That's a good way to appreciate the significance of that event, for a start.

  In that spirit, let's think about that altered `now': the beginning of the West's third millennium of history, but without Lincoln having been assassinated in its past. What would your morning newspaper be called? Would it be different? Would you still be having much the same breakfast ritual, bacon and eggs and a sausage perhaps? What about the World Wars? Hiroshima?

  A very large number of stories have been written with this kind of theme: Wilson Tucker's The Lincoln Hunters is set in such an 'alternat(iv)e universe' and tackles the Lincoln question.

  Curious things happen in our minds when they are presented with any fictional world. Consider for a moment the London of the late nineteenth century. It did have Jack the Ripper, and we can wonder about the real-world puzzle of who he was. It had Darwin, Huxley and Wallace, too. But it did not have Sherlock Holmes, Dracula, Nicholas Nickleby, or Mr Polly. Nevertheless, some of the best

  [1] Counterfactual: a more acceptable word for what has for a long time been a very common feature of science fiction, the 'alternate world' or 'worlds of if story (there was a pulp SF magazine in the 1950s called Worlds of If, in fact). 'Counterfactual' is now used when said stories are written by real writers and historians, to save them the indignity of sharing a genre with all those strange sci-fi people.

  portrayals of the Victorian world are centred around those characters. Sometimes the fictional portrayals are intended to paint a humorous gloss on the society of the period. The Flintstones put just such a gloss on human prehistory, so much so that in order to think rationally about our evolution we must excise all those images, which is probably an impossible task.

  Sherlock Holmes and Mr Polly were Victorians in just the same sense that the tyrannosaur and triceratops in Jurassic Park were dinosaurs. When we envisage Triceratops, we cannot avoid the memory of that warty purple-spotted Jurassic Park skin, as the beast lies on its side, breathing stertorously. And Tyrannosaur, in our mind's eye, is running after the jeep, bobbing its head like a bird. When we envisage late nineteenth-century Baker Street it's very difficult not to see Holmes and Watson (probably in one of their filmic versions) hailing a four-wheeler, off to solve another crime. Our pictures of the past are a mixture of real historical figures and scenarios peopled by fictional entities, and it's difficult to keep them apart, especially as films and TV series acquire better technologies to latch into those spurious pictures in our heads.

  The 1930s philosopher George Herbert Mead made much of the rather obvious point that the present, in a causal world, does not only determine (`constrain' if you prefer) the future, it also affects the past, in just this sense: if I discover a new fact about the present, then the (conceptual) past that led up to the new present must also have be
en different. Mead thereby enabled a rather cute way of seeing how good the portrayals of Sherlock Holmes, or of the Jurassic Park tyrannosaur, are. If my picture of the present isn't altered at all by the presence or absence of Sherlock Holmes in the 1880s, or if my construction of the present by evolutionary processes isn't altered at all by seeing Jurassic Park, then these are consistent inventions.

  Dracula and the Flintstones are inconsistent inventions: if they really existed in our past; then the present isn't what we think it is. Much of the fun of `worlds of if' stories, and of many consistent fictions like The Three Musketeers, is that they show closed-loop causalities in our apparent past. Whether or not D'Artagnan had aggregated the Musketeers and thereby brought into being much of the causal history of seventeenth-century France, children of later centuries would learn the same history in the textbooks. Ultimately, consistent historical fictions make no difference.

  In The Science of Discworld II we played with this idea in several ways: the, presence of the Elves was, surprisingly, consistent with our history; stopping them led to stagnation of humans and had to be reversed. In this book the meddling of the Unseen University wizards, in Victorian history this time, is trying to create an apparently internally caused history in which Darwin wrote The Origin of Species and not Theology of Species. We are going to use this trick to illuminate the causalities of human history.

  In order to do this convincingly, we must make the Discworld intrusions consistent, but even then we must address the convergence/ divergence problem, which is this. Would such a meddled-with world converge on to ours, demonstrating that history is stable, or would any tiny difference start a divergence that became wider and wider, proving history to be unstable?

  Most people think the latter. Indeed, even the wildly imaginative physicists who believe that a new world history is created by each and every decision in this universe, spawning new universes in which the other choices were implemented, don't imagine that the histories converge. No, each universe goes its own way, spitting out new and divergent universes as it goes. The Trousers of Time are a tree: their legs can branch but never merge.

  The Worlds of If stories were divided on this issue. Some had each tiny change in the past getting amplified, resulting in vast changes now: we've mentioned Bradbury's story where you trod on a butterfly in the far past, on a dinosaur hunt, and came back to find a fascist regime. Or the changes you made were all wiped out, because there was a gigantic all-powerful inertia-of-events Kismet that you couldn't change. However you tried to avoid your fate, that only made it more certain to happen. And some stories took a middle way; some things converged and others didn't.

  This, we think, is the rational way to think about time travel and altering the past.

  After all, we don't change the rules by which the past works. Gravity still operates, sodium chloride crystals are still cubical, people fall in and out of love, misers hoard and spendthrifts squander. What we change is what physicists call the `initial conditions'. We change the positions of a few of the pieces on the Great Chessboard of Life, The Universe and Everything, but we still keep to the rules of chess. That's how the wizards operated in The Science of Discworld II. They went back in time to remove the Elves from the game board; then they went back again to stop themselves making that mistake.

  We are now ready to think about our question above: would the names of newspapers have changed if Abraham Lincoln had lived to a ripe old age?

  Perhaps some of them would, because some cultures would have become rather different. Perhaps Quebec wouldn't have been French; perhaps New York would have been Dutch. But names like Daily Mail, Daily News and New York Times are so obvious, so appropriate, that even if the Roman Empire were still running things, the Latin equivalents would seem fitting. Someone would have invented flush toilets, and there would have been a steam engine time, when several people invented steam power. Some things in Western culture seem so likely, from toilet paper on up to (as soon as paper is invented) daily newspapers to plastics to artificial wood ... Technology seems to have a set of rules for its advancement, so that it seems rational to expect gramophones of some kind if people make music with musical instruments, then tape players when people get used to electricity and its possibilities for amplifi

  cation. Then from analogue to digital, to computers ... some things seem inevitable.

  Perhaps this feeling is misleading, but it's silly to insist that absolutely everything in a slightly divergent future has to end up different.

  Organic evolution has lessons for us here, and these lessons can instruct us about how likely various advances in animal organisation were. Innovations like insect wings, vertebrate jaws, photosynthesis, life coming out from the seas on to the land ... if we ran evolution on Earth again, would the same things happen? If we went back to the beginning of life on this planet, and killed it, would another system evolve and give us a whole different range of creatures, or would Earth remain lifeless? Or would we be unable to decide whether we'd done anything, because everything would be just the same the second time around?

  If history `healed up', we wouldn't be able to tell if it was the second, or the hundredth, or the millionth time around - each time sooner or later producing a version of us, whose time machine goes back to The Origin. There would be a consistent time loop, as happened with the Elves in The Science of Discworld II. If life is `easy' to originate (and the evidence does look that way) then this isn't an exercise in going back and killing your grandfather, or if it is, your grandfather is a vampire and doesn't remain killed. If life is easy to invent, then preventing it happening once, or a million times, will make no difference in the long run. The same process that generated it will happen again.

  Looking at the panorama of life on this planet, in time as well as space, we can see that there are two kinds of evolutionary innovation. Photosynthesis, flight, fur, sex, and jointed limbs have all arisen independently in several different lineages. Surely, like toilet paper, we would expect to see them again each time we ran life on Earth.

  And, presumably, we'll see them on other aqueous planets when we explore our local region of the galaxy. Such evolutionary attractors are called `universals', in contrast to 'parochials': unlikely innovations that have happened only once in Earth's history.

  The classic parochial is the curious suite of characters possessed by land vertebrates, because a particular species of Devonian fish succeeded in invading the land in our, real, history. Those fishes' descendants were amphibians, reptiles, birds, and mammals - including us. Jointed limbs are a universal innovation. The limbs of spiders, hydraulically operated, differ in detail from the limbs of mammals, and were presumably acquired via a different ancestor, perhaps an earlier arthropod proto-spider. The mammalian internal skeleton, with one bone at the body end, then two, then a wrist or ankle, then five lines of bones for fingers or toes, was an independent evolution of the same universal trick.

  This highly unlikely combination now occurs in all land vertebrates (except most of the legless ones), because they are all descended from those fishes that came out of the water to colonise the land. Other parochials are feathers and teeth (of the kind that evolved from scales, which are what we have). And, especially, each of the special body-plans that characterise Earth's animals and plants: mammal, insect, rotifer, trilobite, squid, conifer, orchid ... None of these would appear again after a rerun of Earth's evolutionary history, nor would we find exact replicas on other aqueous planets.

  We would expect much the same processes to occur, though, in a repeat run of Earth or on another similar world: an atmosphere far from chemical equilibrium as life forms pump up their chemistry using light; planktonic layers of the seas colonised by the larvae of sedentary animals; flying creatures of many kinds. Such ecosystems would also probably have `layers', a hierarchical structure, fundamentally similar to the ecosystems that have emerged in so many different circumstances on Earth. So there would be 'plantlike' creatures, a productive ma
jority of the biomass (like Earth's grass or

  marine algae). These would be browsed by tiny animals (mites, grasshoppers) and by larger animals (rabbits, antelopes), with a few very large creatures (elephants, whales). Comparable evolutionary histories would lead to the same dramatic scenarios, but performed by different actors.

  The central lesson is that although natural selection has a very varied base to work with (recombinations of ancient mutations, differently assorted in all those `waste' progeny), clear large-scale themes emerge. Marine predators, such as sharks, dolphins, and ichthyosaurs all have much the same shape as barracuda, because hydrodynamic efficiency dictates that streamlining will catch you more prey, more cheaply. Very different lineages of planktonic larvae all have long spines or other extensions of the body to restrain the tendency to fall or rise because their density differs from that of seawater, and most of them pump ions in or out to adjust their densities too. As soon as creatures acquire blood systems, other creatures - leeches, fleas, mosquitoes - develop puncture tools to exploit them, and tiny parasites exploit both the blood as food and the bloodsuckers as postal systems. Examples are malaria, sleeping-sickness, and leishmaniasis in humans, and lots of other parasitic diseases in reptiles, fishes, and octopuses.

  Large-scale themes may be the obvious lesson, but the last examples reveal a more important one: organisms mostly form their own environments, and nearly all of the important context for organisms is other organisms.

  Human social history is like evolutionary history. We like to organise it into stories, but that's not how it really works. History, too, can be convergent or divergent. It seems quite sensible to believe that small changes mostly get smeared out, or lost in the noise, so that big changes are needed to divert the course of history. But anyone familiar with chaos theory will also expect some tiny differences to

 

‹ Prev