We Are Our Brains
Page 25
If boxing is character-forming, character can’t be located in the brain, because there the only observable effect is deterioration. Many brain areas shrink as cells are lost, fibers are torn and lose their protecting myelin sheath, and the typical changes of Alzheimer’s and Parkinson’s can be seen under the microscope. If boxers die suddenly, it’s usually because of cerebral hemorrhage. When someone is knocked out, their brain is slammed into the hole under the skull. This compresses the medulla, the lower half of the brain stem, which regulates vital functions like breathing, temperature regulation, and heart rhythm, with potentially devastating effect. Blows also destroy the hypothalamus and the pituitary gland, causing hormonal deficiencies in 50 percent of boxers. Their sense of smell is also impaired. Despite the use of protective helmets, one in eight amateur boxing matches leads to concussion. The current debate as to whether the brain damage incurred by boxers who are more genetically susceptible to brain trauma should be monitored more closely using psychometric tests is incomprehensible. By the time changes show up, it’s too late. Professional boxing has already been banned for decades in Sweden, Norway, Iceland, North Korea, and Cuba. (Since 2001 Norway has in fact banned all martial sports that can lead to concussion, including the popular and spectacular K-1 fights, a form of kickboxing.) In other countries, doctors have urged a ban on boxing. When you try this in my country, people counter by saying that boxers engage in this activity of their own free will, forgetting that the Netherlands outlawed dueling (in which people also partook of their own free will) centuries ago. You might wonder whether boxers are already showing the first signs of dementia when they elect to take up this barbarian form of “sport.” But that’s yet another argument in favor of protecting them from themselves and finally banning this embarrassing remnant of our primitive evolutionary past.
SEX AND THE OLYMPIC GAMES
The collective sex tests for the Olympic Games have caused a great deal of unnecessary misery.
In 1912, Baron Pierre de Coubertin, the founder of the International Olympic Committee (IOC), opposed the inclusion of women in the Games on the grounds that their participation would be “impractical, uninteresting, unaesthetic, and incorrect.” When women were allowed to take part, a distinction had to be made between the two sexes because of the biological advantage that testosterone gave men in terms of height and muscle power. At the time of the ancient Greeks, the distinction between men and women was easily made. Sports were performed naked, and if you didn’t have a penis they didn’t let you join in. But chromosomal gender, internal and external gender, and gender identity (feeling male or female) aren’t always identical, and these discrepancies are sometimes linked to differences in testosterone levels. Women with too much testosterone can pose a threat to other sportswomen. Dora (Heinrich) Ratjen, a man who had been persuaded by the Nazis to pose as a woman high jumper, competed in the 1936 Olympics, though he came in only fourth. (The deception wasn’t revealed until the 1950s.) It was at those Olympics that the first serious gender controversy arose, when the American gold medal winner of the hundred-meter sprint, Helen Stephens, was accused of being a man, but turned out on inspection to be a woman. Ironically enough, Stella Walsh, the gold medal winner of 1930 whom Stephens beat in 1936, turned out, when she was murdered during a robbery, to be of indeterminate gender. In 1967, a number of Soviet athletes who had been asked to strip in front of a panel of gynecologists failed to turn up for the inspection. It was assumed that they had too much testosterone, either because of a disorder or injections.
The aim of testing for chromosomal gender is to prevent unfair competition in sports. Yet it hasn’t led to any deserved bans, only to personal misery. The test involves screening cells scraped from the inside of a cheek. If someone has two X chromosomes (making them genetically female) a dark spot called a Barr body shows up inside the cell’s nucleus. The first athlete to fail this test was the Polish sprinter Ewa Kłobukowska, who was banned from further participation and ordered to return her Olympic medals (Tokyo 1964). She turned out to have a deviant chromosome pattern of which she’d been unaware, and the affair caused her to become clinically depressed. This test has also been used—quite wrongly—to ban athletes with androgen insensitivity syndrome, like Maria Patino. People with this syndrome have a variation in the receptor for testosterone, which prevents testosterone from affecting their body or brain. Genetically male (XY) individuals with this syndrome therefore develop into heterosexual women. Despite having internal testicles (in the abdominal cavity), they don’t possess an unfair advantage in sports. Quite the reverse, in fact, because they lack the effect produced on normal women by testosterone from the ovaries and adrenal glands. Paradoxically, girls with a mild form of congenital adrenal hyperplasia weren’t banned as a result of chromosomal testing, even though their higher testosterone levels can generate more muscle tissue. SRY, a new genetic test introduced in the 1990s, didn’t improve the situation. Patino was initially felled by the verdict from that test but subsequently fought back and in 1988 was the first sportswoman to be reinstated. It’s not known what test was used in 1950 to impose a lifetime ban on the runner Foekje Dillema, who, according to recent research by Anton Grootegoed, may well have been a woman but also possessed some testicular tissue as a result of a rare chromosomal abnormality. Whatever the case, it meant that top runner Fanny Blankers-Koen lost her main rival, and there are rumors that she or her husband had a hand in initiating a sex test by the Dutch National Athletics Federation. Foekje, too, was ultimately reinstated, albeit posthumously.
There was an enormous fuss when some male-to-female transsexuals took part in competitions as women—as if one would undergo the protracted misery of a sex change just to win a medal. However, Renée Richards, an MtF transsexual, won a court case in the United States that allowed her to compete in women’s tennis. Since 2004, following research by Louis Gooren, a Dutch professor of transsexology, MtF transsexuals have been allowed to take part in sports two years after gender-reassignment surgery if their hormone levels have “normal” values and their sex change has been formalized. The Canadian transsexual cyclist Kristen Worle sought to participate officially in the Beijing Olympics but, alas, failed to qualify.
In 1999 it was decided to abolish the collective sex tests for the Olympic Games. A team of specialists would instead be on constant standby to investigate any problems professionally. This was a distinct improvement on applying a simple but fallible test to a very complex problem. As of May 1, 2011, the International Association of Athletics Federations (IAAF) has opted for the most logical and simple approach. Investigations are now confined to the level of testosterone in the blood. If women’s testosterone levels are lower than would be normal in men, they may participate in women’s events. An exception is made for individuals with androgen insensitivity syndrome like Maria Patino. At long last a logical solution has been found that doesn’t entail someone suddenly being told that they are not a woman but a man. And it’s a good solution, because it’s all about the effect of testosterone on our muscles. But it will be interesting to see how the IAAF deals with the boundaries of normal values.
DEATH OF THE FITTEST
How did people ever get the idea that exercise—apart from the mental kind—is healthy?
Over the last hundred years, the average life expectancy has risen from forty-five to nearly eighty years, even though we have simultaneously become much less physically active. You might happily conclude from this that it pays to be lazy. But strangely enough, no one does. There are few things people agree on in this world, but it is a truth universally acknowledged that we don’t get enough exercise these days. As a result, you can no longer enjoy a pleasant stroll through the woods without being overtaken by panting and sweating joggers, most of whom look as though they’re in agony. Any self-respecting company sponsors athletes; marathons are organized for children with cancer. Amsterdam’s Academic Medical Center, which should know better, organizes an annual charity run. At 6:45 A
.M. an exercise initiative aimed at Dutch senior citizens bombards the nation with images of elderly people leaping about in leotards.
Where on earth did people get the idea that sports are good for you? Certainly not by working in an emergency room on Sunday mornings, as I used to do. Early January 2009 was a case in point. The Dutch canals froze, whereupon half the people of Holland dug out their skates and hit the ice—in many cases literally. Hospitals were struggling to cope with the ten thousand extra patients being admitted with broken bones, hypothermia, and the like. Hardly a contribution to public health, any more than the special flights made every year to transport Dutch skiers with broken legs back from winter sports regions. There are 1.5 million sports injuries a year in the Netherlands, half of which require medical treatment. If sports were banned, all our waiting lists would disappear overnight. We already know that boxers can end up with lasting brain damage (see earlier in this chapter). The risk run by kickboxers turns out to be ten times as great. Soccer players lose brain cells, too, what with all that heading and the odd elbow in the face. Long-distance runners have been dropping dead since the very first marathon in Greece. Some 15 percent of paraplegics incurred their injuries from sports. The American actor Christopher Reeve, famous for playing the role of Superman, was paralyzed for life after breaking his neck in a fall from his horse.
A compulsion to exercise can also be a sign of disease; it is, for instance, a typical symptom of anorexia nervosa (see chapter 5). People with anorexia often work out obsessively. Decades ago, long before jogging was fashionable, the neurologist Frans Stam was looking out of his window at Valeriusplein, a square in Amsterdam. To his amazement he saw someone emerge from one of the houses opposite his, run around the square several times at high speed, and then go back in again. This process was sometimes repeated several times a day. A few months later, the man in question was hospitalized; he proved to have Pick’s disease, a form of dementia in which the prefrontal cortex atrophies, which often first manifests itself in behavioral disorders. Since Stam told me that story, I’ve always been a bit wary of joggers. No one seems to worry very much about the increased risk that athletes have of contracting ALS, a form of motor neuron disease, or about the fact that up to 150 people a year in the Netherlands suddenly drop dead on playing fields or in gyms. Bodybuilders happily inject themselves with anabolic steroids and in the past took growth hormone preparations made from human pituitaries that sometimes turned out to be infected with Creutzfeldt-Jakob disease, a type of dementia that progresses very rapidly. It does indeed seem, as the Dutch magazine Vrij Nederland once jokingly claimed, that half the population takes part in sports, while the other half drives them to the hospital.
You might argue that these are just some of the minor risks of a lifestyle that on the whole makes people long-lived and healthy. But you’d be on shaky ground. The studies and statistics that allegedly support the benefits of exercise aren’t based on properly controlled trials but on comparisons of groups of people who themselves opted to take up a sport (or not). This self-selection makes it impossible to draw any valid conclusions. Conversely, as far back as 1924, Raymond Pearl found that extreme physical exertion actually shortened lifespan. This appears to apply to the whole animal kingdom. Comparative research by Michel Hofman at the Brain Institute shows that two factors determine our lifespan: metabolism and brain size. The higher the metabolism, the shorter the lifespan. This ties in with the finding that top athletes at Harvard have shorter lifespans than their non-athletic classmates. So the enormous physical effort involved in exercise might even have a life-shortening effect. The American researcher Rajinder Sohal found that the more flight movements a fly makes, the sooner it dies. If you prevent flies from wasting energy by confining them within two plastic plates, so that they can’t fly, they live up to three times longer. A single organ, the brain, also affects length of life: The larger and more active it is, the longer your lifespan. Conversely, brains that are too small, for instance because of microcephaly or Down syndrome, shorten lifespan. Stimulating the brain also appears to delay the onset of Alzheimer’s and can mitigate the symptoms of this disease (see chapter 18). Eminent scientists are said to have larger brains and to live longer. You can increase brain size by providing stimuli in the form of new and constantly varying information, for instance by giving children an enriched environment (see chapter 1). So it would appear to be healthier to watch sports than to take part in them. And if you’re really bent on taking up a sport, how about chess?
13
Moral Behavior
PREFRONTAL CORTEX: INITIATIVE, PLANNING, SPEECH, PERSONALITY, AND MORAL BEHAVIOR
The functions of the prefrontal cortex came to light as a result of brain damage and disorders.
As with many human brain structures, the functions of the prefrontal cortex (fig. 15) came to light only as a result of accidents, operations, and neural disorders. In 1848, a railroad construction foreman named Phineas Gage was stuffing blasting powder, fuse, and sand into holes with an iron rod when an explosion blew the thirteen-pound rod right through his head, causing half a teacupful of his brain to be spilt on the ground. Amazingly, Gage not only survived the accident, he remained fully conscious in the aftermath of his terrible injury. But he underwent a marked personality change. Previously hardworking and responsible, he became fitful, capricious, aggressive, and foulmouthed, and he ended up losing his job. As his friends put it, “Gage was no longer Gage.” Indeed, one of the functions of the prefrontal cortex, which had been damaged in Gage’s accident, is to ensure that we conform to social norms.
Another one of its functions was discovered shortly afterward, when Paul Broca, a physician working at a hospital in Paris, carried out an autopsy of a patient who had been nicknamed “Tan,” because “tan” was the only distinguishable sound he could make. His inability to speak proved to be caused by an infarction in the frontal lobe of his left cerebral hemisphere (fig. 8). This region of the brain, which is responsible, among other things, for the production of grammatically correct sentences, is now known as Broca’s area. Damage to this region after a stroke leaves patients with aphasia, that is, speech disorders.
A hundred years after Gage’s accident, during the “heyday” of psychosurgery, lobotomies were performed to destroy the prefrontal cortex deliberately. Misinterpreted findings in animal studies suggested that lobotomies could help schizophrenia sufferers or violently aggressive individuals. The film One Flew over the Cuckoo’s Nest memorably shows how the operation transforms a rebellious and difficult patient into an apathetic zombie who just sits in a chair, gazing vacantly into space. Of course, he is now much more manageable from a clinician’s point of view—and that was deemed important when considering a lobotomy. Eventually, doubts were increasingly voiced about whether lobotomies were an effective treatment for aggressive behavior. It may be that the medical world was alarmed by the fate of the Nobel Prize–winning surgeon who devised the procedure, António Egas Moniz, who was shot—by a disaffected patient, it was claimed—and spent his remaining years in a wheelchair.
In 1951, 18,608 lobotomies were performed in the United States, mainly on schizophrenia patients. The vogue was started by Walter Jackson Freeman, nicknamed “Jack the Brainslasher,” who enthusiastically performed the operation all over the United States, touring the country in a van that he called his “lobotomobile.” After stunning a patient with an electric shock, he would hammer an ice pick through the back of the eye socket into the frontal lobe, thus destroying the connection with the other parts of the brain. The effect of the procedure wasn’t at all understood at the time. Pope Pius XII announced that the Church did not oppose lobotomy “as long as free will is retained, even if there be some loss of personality”; another high-ranking Catholic added, “If the soul survives death, it can presumably survive a lobotomy.” The operation was later rightly characterized as “partial euthanasia,” because the patients’ personalities were blunted, and they became completely apathe
tic. Doctors eventually stopped resorting to the operation—not from ethical considerations, but because it was rendered unnecessary by the emergence, in the mid-1950s, of psychoactive drugs. The damage caused to so many individuals by lobotomies was never properly documented, though it became abundantly clear from the operations that the prefrontal cortex played a crucial role in expressing personality and taking initiative.
In his book The River That Flows Uphill, William H. Calvin tells the following anecdote:
The famous Montreal neurosurgeon Wilder Penfield had a sister … who was one of those cooks who could spend four hours preparing a five-course meal and have everything turn out just right. Nothing got cold or overcooked, because it was always ready to come off the burner or out of the oven just when it was needed. Now that’s truly a precision-timing scenario. But Penfield’s sister began to lose this ability. Over the course of several years, the holiday family dinners began to distress her because she couldn’t get properly organized as she had used to. For ordinary dinners she was still a good cook. Most physicians wouldn’t have picked up on such subtle clues. But Penfield’s clinical instincts told him that she might have a frontal lobe tumour. She did. He operated. She recovered.