The Telescope in the Ice
Page 54
Schneider, Darryn. 2007. Diaries of trips to the South Pole. http://antarctica.kulgun.net/SouthPole/ (accessed February 15, 2013).
Schorn, Ronald A. 1987a. A Supernova in our backyard. Sky & Telescope 73:382 (April).
________. 1987b. Supernova shines on. Sky & Telescope 73:470 (May).
________. 1987c. Neutrinos from hell. Sky & Telescope 73:477 (May).
Schwartz, M. 1960. Possibility of using high energy neutrinos to study weak interactions. Phys Rev Lett. 4:307.
Schwarz, Robert. 2015. iceman’s South Pole page. http://www.antarctic-adventures.de/ (accessed June 3, 2015).
Segrè, Emilio. 1970. Enrico Fermi, physicist. Chicago: University of Chicago Press.
Segrè, Gino. 2007. Faust in Copenhagen: A struggle for the soul of physics. New York: Viking Penguin.
Seife, Charles. 2004. Wanted: One good cosmic blast to shake the neighborhood. Science 303:164–5. [doi: 10.1126/science.303.5655.164]
Simonsen, Mike. 2009. Albert Jones–the interbiew [sic] (blog post). http://simostronomy.blogspot.com/2009/11/albert-jones-interbiew.html (accessed August 21, 2011).
Sobel, Henry W., and Yoichiro Suzuki. 2008. Yoji Totsuka (1942–2008). Nature 454:954.
Sokalski, I., and C. Spiering, eds. (Baikal Collaboration). 1992. The Baikal neutrino telescope NT-200.
Spiering, Christian, ed. 1999. Simulation and analysis methods for large neutrino telescopes (Proceedings of an international workshop, Zeuthen, Germany, July 6–9, 1998). Zeuthen: DESY. (DESY-PROC-1999-01.)
Spiering, Christian. 2012. Towards high-energy neutrino astrophysics: A historical review. Eur. Phys. J. H 37:515–65. [doi: 10.1140/epjh/e2012-30014-2]
Stark, Jack. 1995. The Wisconsin Idea: The university’s service to the state, in 1995–1996 Wisconsin blue book. Madison: Wisconsin Legislative Reference Bureau. http://legis.wisconsin.gov/lrb/pubs/feature/wisidea.pdf (accessed July 10, 2012).
Stenger, V. J., ed. 1981. DUMAND 80: Proceedings. 2 vol. Honolulu: Hawaii DUMAND Center.
Stokstad, Robert G. 2005. Design and performance of the IceCube electronics. Presentation at 11th workshop on electronics for LHC and future experiments, Heidelberg, 12–16 September. http://icecube.lbl.gov/PDFS/RGS_Heidelberg_paper.pdf (accessed November 15, 2015).
Sutton, Christine. 1992. Spaceship neutrino. Cambridge: Cambridge University Press.
Taubes, Gary. 1986. Nobel dreams: Power, deceit, and the ultimate experiment. New York: Random House.
Tilav, Serap, et al. (AMANDA Collaboration). 1997. Indirect evidence for long absorption lengths in Antarctic ice. In A. Taroni, ed. 1997. XXIV ICRC Rome 1995. (24th International cosmic ray conference: Proceedings) Vol. 1. Bologna: Ed. Compositori, 1011–4. (Il Nuovo Cim. 19C (1997) 623–804).
Time. 1951. SPIES: Worse than murder, 15 April. http://www.time.com/time/magazine/article/0,9171,814669-1,00.html (accessed March 15, 2011).
Totsuka, Yoji. 1999. Evidence for neutrino oscillation observed by Super-Kamiokande. In Spiering 1999, 76–95.
Turchetti, Simone. 2003. Atomic secrets and governmental lies: Nuclear science, politics and security in the Pontecorvo case. Brit. J. Hist. Sci. 36(4):389–415.
________. 2012. The Pontecorvo Affair: A cold war defection and nuclear physics. Chicago: Univ. of Chicago Press.
Überall, H., and C. Cowen. 1965. In C. Franzinetti, ed. Proc. CERN conf. on exptl. neutrino physics: CERN Report 65–32. Geneva: CERN, 231.
Uhlenbeck, G. E., and S. Goudsmit. 1925. Ersetzung der hypothese von unmechanischen zwang durch eine forderung bezuglich des inneren verhaltens jedes einzelnen elektrons. Naturwissenschaften 13:953–4.
________. 1926. Spinning electrons and the structure of spectra. Nature 117:264–5.
University of Wisconsin-Madison Archives, Oral History Project. 2007. Interview #842. Halzen, Francis.
Vander Velde, John C. 2002. The IMB experiment: A brief historical sketch 1979–1989. http://www-personal.umich.edu/~jcv/imb/imb.html (accessed July 21, 2011).
von Meyenn, Karl, and Engelbert Schucking. 2001. Wolfgang Pauli. Phys. Today 54:43–8. [doi: 10.1063/1.1359709]
Waxman, Eli. 1995. Cosmological gamma-ray bursts and the highest energy cosmic rays. Phys. Rev. Lett. 75:386. [doi: 10.1103/PhysRevLett.75.386]
________. 2014. The beginning of extra-galactic neutrino astronomy. Physics 7:88. http://physics.aps.org/articles/v7/88 (accessed July 10, 2016).
Waxman, Eli, and John Bahcall. 1997. High energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78:2292. [doi: 10.1103/PhysRevLett.78.2292]
Weekes, Trevor C., et al. 1989. Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342:379.
Weisskopf, Victor F. 1972. In C. Weiner, ed. Exploring the history of nuclear physics. New York: American Institute of Physics.
Westphal, Andrew J., P. Buford Price, and Daniel P. Snowden-Ifft. 1990. A measurement of the isotopic composition of iron-group elements in the galactic cosmic rays using balloon-borne track-recording detectors in Antarctica. In Mullan et al. 1990, 184–9.
Wheeler, John A., and Kenneth Ford. 1998. Geons, black holes & quantum foam: A life in physics. New York: W. W. Norton.
Wiebusch, Christopher H. V. 1994. Signal processing with JULIA. In Peter C. Bosetti, ed. Trends in astroparticle-physics. (Proceedings of a conference held in Aachen, Germany, in 1991). Stuttgart: B.G. Teubner Verlagsgesellschaft, 217.
Wigner, Eugene P. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pur. Appl. Math. 13:1–14.
Wilczek, Frank. 2009. Majorana returns. Nature Phys. 5:614–8. [doi:10.1038/nphys1380]
Wilkes, R. Jeffrey, John G. Learned, and Peter W. Gorham. 2003. Deep ocean neutrino detector development: Contributions by the DUMAND project. http://www.phys.hawaii.edu/~dumand/dumacomp.html (accessed June 9, 2011).
Williams, P. K., et al. 1996. Report on the scientific assessment group for experiments in non-accelerator physics (SAGENAP), February 20–21, 1996. Washington D.C.: United States Department of Energy. http://science.energy.gov/~/media/hep/pdf/files/pdfs/sagenap.pdf (accessed October 3, 2012).
Wilson, Fred L. 1968. Fermi’s theory of beta decay. Am. J. Phys. 36:1150–60.
Wischnewski, Ralf, et al. (AMANDA Collaboration). 1997. A System to search for supernova bursts with the AMANDA detector. In A. Taroni, ed. 1997. XXIV ICRC Rome 1995 Vol. 1. Bologna: Ed. Compositori, 658–61. (Il Nuovo Cim. 19C (1997) 623–804.)
Wolchover, Natalie. 2015. The particle that broke a cosmic speed limit. Quanta (online magazine), 14 May. https://www.quantamagazine.org/20150514-the-particle-that-broke-a-cosmic-speed-limit/ (accessed May 18, 2015).
Woosley, S. E., and H.-T. Janka. 2005. The physics of core-collapse supernovae. Nature Phys. 1:147. [arXiv:astro-ph/0601261v1]
Woosley, S. E., and M. M. Phillips. 1988. Supernova 1987A! Science 240:750–9.
Woosley, S. E., and T. Weaver. 1989. The great supernova of 1987. Sci. Am. 261:32 (August).
Wright, John H. 2012. Blazing Ice: Pioneering the twenty-first century’s road to the South Pole. Dulles, Virginia: Potomac.
Wu, C. S. 1960. The neutrino. In Fierz and Weisskopf 1960, 249–303.
Wu, C. S., E. R. Ambler, W. Hayward, D. D. Hoppes, and R. P. Hudson. 1957. Experimental test of parity conservation in beta decay. Phys. Rev. 105:1413.
Yang, C. N. 1957. The law of parity conservation and other symmetry laws of physics. Nobel lecture. http://nobelprize.org/nobel_prizes/physics/laureates/1957/yang-lecture.pdf (accessed January 22, 2011).
Zas, Enrique, Francis Halzen, and Todor Stanev. 1992. Electromagnetic pulses from high-energy showers: Implications for neutrino detection. Phys. Rev. D 45:362–76.
Zheleznykh, I. M. 1958. On the interaction of high energy neutrinos in cosmic rays with matter. Diploma thesis, Moscow State University, Physical Faculty.
________. 2006. Early years of high-energy neutrino physics in cosmic rays and neutrino astronomy (1957
–1962). Int. J. Mod. Phys. A 21:1. [doi: 10.1142/S0217751X06033271]
INDEX
The index that appeared in the print version of this title does not match the pages in your e-book. Please use the search function on your e-reading device to search for terms of interest. For your reference, the terms that appear in the print index are listed below.
accelerators
cosmic
Large Hadron Collider (LHC)
principle of operation
Ahlers, Markus
air showers. See cosmic rays
Amundsen, Roald
Amundsen-Scott Research Station (South Pole)
culture of
wintering over at
Anderson, Carl
Antarctic Muon and Neutrino Detector Array (AMANDA)
AMANDA-A
as supernova detector
AMANDA-B4
AMANDA-B10
final drilling campaign
first gold-plated events. See also Eva event; Peacock events
first neutrino candidates
funding of
and IceCube
naming of
Nature papers
origins
science with
Antarctic Treaty
Antarctica: A Year on Ice (documentary)
ANTARES
antineutrino
antiparticle
ATmospheric High Energy Neutrino Experiment (ATHENE)
Auger, Pierre
Augustine, Norman
Ayotte, Sally
Baade, Walter
Bahcall, John
Baikal neutrino telescope
detects first-ever gold-plated neutrinos
NT-200
origins
political challenges
reconstructs first-ever up-going muons
wins “three-string race”
Baksan Neutrino Observatory (Caucasus)
Baldo Ceolin, Milla
Balzan Prize
Barber, Bill
Barger, Vernon
Barish, Barry
Barker, William
Bartol Research Institute (University of Delaware)
Barwick, Steven
Bateson, Frank
Bay, Ryan
Beattie, Keith
Bell Telephone Laboratories
Bentley, Charley
Berezinsky, Veniamin
Bernstein, Jeremy
beta decay
and energy conservation
energy spectrum of
Fermi’s quantum theory for
inverse
Joliot-Curies’ form of
and neutrinos
Bethe, Hans
theory of energy and neutrino production in stars
Bezrukov, Leonid
Big Bang
black holes
Blood, Howard
Bohr, Niels
Bonolis, Luisa
Born, Max
Bosetti, Peter
Botner, Olga
Bouchta, Adam
Bret, James “Tater”
Brookhaven National Laboratory
Budnev, Nikolaij
Burrows, Adam
Bush, George W.
Caltech
Jet Propulsion Laboratory
Camerini, Ugo
Carter, Jimmy
cascades
Case Institute of Technology (later Case Western Reserve University)
CERN (Conseil Européen pour la Recherche Nucléaire)
Chadwick, James
Chen, Herb
Cherenkov, Alekseyevich
Cherenkov detectors (Cherenkov counters)
Greisen (“shell”) design
Markov (“plum pudding”) design
principle of operation
submarine communication with
supernova detection with
Cherenkov radiation (Cherenkov light)
Cherenkov telescopes, air. See also Cherenkov detectors (Cherenkov counters): Markov (“plum pudding”) design
Cherwinka, Jeff
Chinowsky, William “Willi”
Christchurch, New Zealand
Chudakov, Aleksandr
climatology
Cline, Camerini, Fry, March, Reeder (CCFMR) research group
Cline, Dave
Clinton, Bill
Columbia University
Colwell, Rita
Cook, Frederick
Córdova, France
Cosmic Background Explorer (COBE)
Cosmic Microwave Background Radiation
cosmic ray physics
instruments (laboratories, stations)
cosmic rays
air showers
discovery of
neutrinos as
cosmology
Cowan, Clyde. See also neutrinos: discovery of
Cowan, Doug
Crab Nebula
Cray T3E supercomputers
Curie, Marie
Cygnus X-3
Dahlberg, Eva. See also Eva event
dark matter
Daschle, Tom
data acquisition system (DAQ)
Davis, Howard
Davis, Ray
de Los Heros, Carlos
Deep Underwater Muon and Neutrino Detector (DUMAND)
cancelation of
creation of
DUMAND on ice
Honolulu workshop (1976)
significance of
DeepCore
DeYoung, Tyce “Ty”
digital optical modules (DOMs). See also Nygren, David
Dirac, Paul
Dirac equation
Domogatsky, Grigorii
E1A experiment
Einstein, Albert
general theory of relativity
special theory of relativity
and Pauli, Wolfgang
Ekström, Patrik
Elcheikh, Alan
Electrodynamics (Jackson)
electrons
electroweak theory of particle physics
Ellis, Charles Drummond
Engelhardt, Hermann
Enz, Charles
Eva event
Fermi, Enrico
engineers first manmade nuclear chain reaction
slow neutron research
theory of beta decay. See beta decay
and via Panisperna Boys
Fermi Large Area Telescope
Fermilab
Feynman, Richard
Feyzi, Farshid
Fierz, Markus
fine structure constant
firn (glacial layer)
fission, nuclear
as neutrino source
Fly’s Eye experiment
forces, fundamental
electromagnetic force
gravitational force
strong nuclear force
weak nuclear force
See also grand unification theories; standard model of particle physics
Frisch, Otto
Fry, William F. “Jack”
Gaisser, Tom
Galileo Galilei
Gamma-ray Astronomy at the South Pole (GASP)
gamma ray bursts (GRBs)
gamma rays
Ganugapati, Raghunath “Newt”
Garwin, Richard
Georgi, Howard
glaciology
Glashow, Sheldon
Glorious Revolution
Glowacki, Dave
Goldhaber, Maurice
Goldschmidt, Azriel
Gonzalez-Garcia, Maria Concepcion
Goobar, Ariel
Gore, Al
Gorham, Peter
Goudsmit, Samuel
Gow, Anthony
grand unification theories
string theory
supersymmetry
See also forces, fundamental
Grant, BK
Greisen, Kenneth
Hahn, Otto
Haleakalā telescope
Hallgren, Allan
Halze
n, Francis
career path
childhood and education
conceives of AMANDA
and DUMAND
as manager and leader
and standard model of particle physics
See also Quarks and Leptons (Halzen and Martin)
Hanson, Kael
Hardtke, Rellen
Hartill, Donald
Hartline, Beverly
Harvard-Purdue-Wisconsin experiment (HPW)
Haugen, Jim
Heisenberg, Werner
Henderson, W. J.
“Herc”
Hess, Victor
Higgs boson
high-energy physics (HEP)
Hill, Gary
Hincks, E. P. “Ted”
Hoffman, Kara
Homestake Gold Mine (Lead, South Dakota)
hot water drilling
Bucky-1 (drill)
firn drill
Wotan (Enhanced Hot Water Drill)
Hoyle, Fred
Hulth, Per Olof “Peo”
and DeepCore
and “Swedish Camera”
Hundertmark, Stephan
ice
air bubbles in
clathrates in
drilling. See hot water drilling; ice core drilling
dust layers in
properties
transparency to Cherenkov light
ice core drilling
at Byrd Station (West Antarctica)
at Greenland Ice Sheet Project (GISP)
at Kilimanjaro (Africa)
at Nevado Sajama (Bolivia)
and second Greenland Ice Sheet Project (GISP2)
at Vostok Station (Antarctica)
See also Polar Ice Coring Office (PICO)
IceCube
approval process
as cosmic ray instrument
and dark matter
DeepCore
deployment. See also Tower Operations Structure
detects first cascades
detects first muon
and electron neutrinos
and extraterrestrial (astrophysical or cosmic) neutrinos
funding
and gamma ray bursts
and GZK neutrinos
IceCube-GEN2
IceCube Laboratory (ICL)
IceTop
management of
naming of
Neutrino Detector Workshop, UC Irvine
Neutrino Observatory
and neutrino oscillation
and neutrino point sources (neutrino stars)
origins of
and politics
Precision IceCube Next Generation Upgrade (PINGU)
principle of operation
and sterile neutrinos
and supernovae
and tau neutrinos
and ultrahigh-energy cosmic rays
IceCube Particle Astrophysics Symposium