Manthropology
Page 3
T8, on the other hand, was sprinting barefoot through a shallow, soft, muddy lake edge, with nothing but a possible meal of kangaroo or waterbird to spur him on, and he still managed to clock 23 miles per hour. Since the energy cost of running through mud or sand is 1 to 2 times that of running on a solid surface (let alone a rubberized track) this implies T8’s real speed was around 27.6 mph. Given that this may not have been his top speed (his lengthening strides show he was accelerating) and that he was just one of possibly 150,000 Aboriginal men alive at that time (and probably not even the fastest), it seems likely there were many prehistoric Australian males who could, if they trained, have regularly clocked 28 miles per hour and taken out every Olympic sprint in which they competed.
How was T8 able to run so fast? Australian Aboriginal men and women have many enviable sporting achievements today, but nothing to equal this. It is tempting, given how far back in the distant past T8 and his comrades lived, to put it down to genetics, like the superior strength of the Neandertals. But T8 was essentially the same feeble species of man as today’s Homo sapiens. Besides, he was not the only incredibly high ancient achiever. Fast forward seventeen thousand five hundred years, and slip across to the Mediterranean, and you’ll find another group of super-athletic males whose achievements confound science to this day—ancient Greek trireme rowers.
Greek triremes were 132-foot wooden warships driven by the oars of 170 rowers arranged vertically on three decks. Thucydides, the famous Greek historian, records that in 427 BCE the Athenian Assembly hot-headedly ordered that the men of Mytilene, a colony 211 miles away on the Aegean island of Lesbos, should be put to death, and dispatched a trireme with the command. The next day they repented, sending another trireme to rescind it. The first trireme had a whole day-and-a-half start, but Thucydides records that, by rowing for 24 hours straight, the second ship caught up with the first and canceled the murderous order. Even allowing for exaggeration on Thucydides’ part, this puts the second trireme’s sustained speed in excess of 7.5 miles per hour, or almost 7 knots. This is an impressive pace, but one that was, according to other Greek writers, commonly maintained by even mediocre trireme crews. Such statements have caused many a modern historian to wonder—could today’s oarsmen achieve such speeds? Thanks to a British exercise physiologist, the Greek navy, and a dash of Olympic nostalgia, we now know the answer.
They can’t.
As part of the opening ceremony for the 2004 Athens Olympics, the Olympic flame was towed into the Athenian port of Piraeus by a trireme named Olympias, which was reconstructed by the Greek navy in 1987 from pictures of triremes on ancient lamps and paintings. Harry Rossiter, an exercise physiologist from Leeds University and a racing oarsman himself, took the opportunity to test the endurance of trained modern rowers in a real-life trireme. The results were dismal. Rossiter reported that the modern rowers could, after several months of training, get Olympias up to nine knots for a brief spurt; but they couldn’t maintain that speed, or even just seven knots, for any sustained period. Rossiter measured the rowers’ metabolic rates and discovered the reason: the modern crew just wasn’t physically capable of the sustained aerobic effort required.
“The Athenian oarsmen’s endurance was extraordinary,” said Rossiter’s coresearcher, historian Boris Rankov. “In that respect, compared to anybody you could find today they were super athletes.”12
What makes the ancient Greek rowers’ achievements even more remarkable is that they were small men. Champion rowers today average 6'3", giving them a reach advantage with the oars, but ancient Athenian males averaged a mere 5'6". Remarkable, too, is the fact that Athens seemed to have so many of these superb athletes, at one stage fielding a thirty-four-thousand-strong army of rowers for the city’s two-hundred-trireme fleet. The rowers were apparently paid and fed well, but their diet was nothing special, consisting of simple barley meal kneaded with olive oil and wine. So why then are modern rowers so weak by comparison?
Part of the answer seems to lie in training. Elite rowers training for the Olympics today row about one hundred miles a week, which corresponds to between twelve and fourteen hours at the oars. But Thucydides makes it clear that trireme rowers often went on training voyages that lasted for days. Races were also held to keep them at peak fitness. (The Romans, who also used oared triremes, even made their crews practice rowing on land, according to the Greek historian Polybius.) This can’t be the whole story, however. Modern studies have found that increasing aerobic endurance training generally only raises performance in already-trained athletes by around 4 percent. Was the secret behind the incredible aerobic capacity of the trireme rowers, then, also genetic? Again, this is an appealing explanation, but one difficult to believe given that just three thousand years separates the heroic Athenians from their sluggish modern counterparts. Evolutionary change, via natural selection, generally works on much longer timescales than that. The answer probably lies more in our modern-day bone idleness. To find it we need to actually look at those bones, for it is there that the full story of our feeble sloth is written.
Studies comparing our bones to those of fossil humans reveal that we have lost about 40 percent of our bone mass and strength over the past 2 million years. This, too, could be chalked up to genetic causes, except for one telltale sign: the articular heads of our bones (the bulbous ends that form joints such as the knee, hip, and elbow), whose growth definitely is genetically controlled, are still almost exactly the same size as those of Homo erectus, who lived from approximately 2,000,000 BCE to 1,000,000 BCE. Our loss of bone mass has mostly been from the shafts of our long bones—the femur, humerus, tibia, fibula, radius, and ulna—the components known to be those most responsive to Wolff’s law. The cause is the declining levels of muscular load placed on them over the past 2 million years. Proof of this can be seen in modern athletes’ bones, which grow thicker in response to repeated muscular stress. Some modern tennis players, for example, display a cortical thickness in their upper-arm bones almost equal to that of Homo erectus.13
This then is the real secret of the Ice Age Australian runners and the Athenian trireme rowers: their incredible athleticism was not genetic, but ontogenetic. Ontogeny is the process by which an organism grows by interaction with its environment. While genes might fix the limits of its potential development, whether or not it reaches them is governed by the environmental stresses placed upon it. Effectively, therefore, those historic and prehistoric men were superb athletes because of the working toughness they had developed over harsh and demanding lives. Not only was the Athenian trireme rowers’ training drastically tougher than that of modern oarsmen, their work as shepherds and farmers formed a grueling, lifelong program of bone, muscle, and tendon toughening. Ice Age Australian runners, similarly, probably trekked and ran substantial distances daily. (Studies of a comparable hunting population, the Kalahari Desert Kung, have found that male Kung hunters run an average of 18.6 miles on every antelope hunt.) Importantly, both groups probably also began this constant exercise from a very early age, a crucial help in developing bodily toughness. Those scientific studies documenting bone thickening in modern tennis players, for example, found that the greatest expansion took place between the ages of eight and fourteen.
Examples of how much working toughness historical men had compared to Homo masculinus modernus are available even closer to home. Laborers in the rip-roaring early days of the Industrial Revolution, for example, often performed feats unthinkable today. One New Scientist correspondent reported that bridge builders in the mid-nineteenth century toiled all day with forty-pound sledge-hammers; today’s hammers weigh fourteen pounds. English railway navvies in the 1850s were expected to shovel, by hand, twenty tons of earth daily. In the Sheffield steel mills men chained themselves in gangs of forty to drag glowing iron plates weighing twenty-five to thirty-five tons from the furnace to the “Demon Hammers” for stamping, draping themselves in wet sacking to survive the hellish heat. Remarkably, these super-strong work
ing men were also much smaller—at an average 56 around four inches shorter—than their weakling modern counterparts, who, as we have seen, now average 510 in height.
Again, an early start to a tough working life seems to have made the difference. Young boys employed as runners in British glass-works apparently ran between 13 and 17 miles a day, ferrying blown bottles to drying rooms. Lads with the unenviable job of “pusher-out” in a brickworks (dragging cartloads of bricks from the moulder’s table to the kiln) were thought to shift between 12 and 25 tons a day. While such abuses, thankfully, went the way of witch burnings after the Earl of Shaftesbury’s report showed a revolted British public that naked five-year-olds were pulling carts like beasts in deep and deadly coal mines, it is worth noting that such grueling work isn’t always as crippling as we assume. Porters in the Nepalese mountains—another group of small men at an average 411 and 110 pounds—routinely transport punishing loads of 200 pounds (almost twice their body weight) up to 60 miles, on foot, along steep mountain trails. They, too, start at an early age (usually twelve) but seem able to keep working well into their seventies without noticeable degeneration in either spine or joints. Chinese cycle hauliers, similarly, crisscross Beijing daily with loads in excess of 1,100 pounds, and seem able to keep it up without ill effect into late middle age.
Perhaps the most striking examples of working toughness in action are the careers of the old-time strongmen. The circus and sideshow performers of the strongman golden age (mid-nineteenth to early twentieth century) are often ridiculed as leopard-skinned lard tubs with a nice line in facial hair and fakery, and little else besides. Their failure to reach the impressive records of modern weightlifters, such as the 580-pound clean-and-jerk of Iranian super-heavyweight Hossein Rezazadeh at the 2004 Olympics, is held to be evidence of their lack of real super strength. Yet this does these remarkable characters an injustice. In fact, much of the increase in weights lifted today is due simply to improved technique and standardization of events. Old-time strongmen dabbled in a crazy variety of feats beyond the two basic lifts of Olympic weightlifting—neck lifting, back lifting, chain breaking, card tearing, and coin and horseshoe breaking, to mention a few. Actually, the real evidence shows that some of the historical strongmen were just that: very strong indeed.
Louis Uni, for example, who used the stage name Apollon in his late-nineteenth century Parisian performances, was a 6'3" giant weighing a muscular 260 pounds. He was so strong that the pranks other performers played on him—secretly swapping his weights for supposedly unliftable amounts—often backfired when Apollon failed to notice the change. At an 1892 show at the Varieties Theatre in Lille, for example, a friend switched Apollon’s 220-pound barbell for a 385-pound version (almost 70 percent of the modern-day clean-and-jerk record): the strongman not only lifted it, he held it up in one hand (while standing on one leg), then tossed it up and caught it in the crook of his elbows. Apollon also used to lift a set of solid train wheels, which have been raised by just three weightlifters in the 80 years since his death. There is now an official event called “Apollon’s Wheels” on the American strongman competition circuit, in which competitors attempt to lift a replica.
Importantly, many nineteenth-century strongmen worked in tough, physical occupations before they became professional performers. John Marx, “The Luxembourg Hercules,” famous for his 3,968-pound harness lift, in which weights were lifted by straps from the shoulders, worked as a blacksmith from an early age, and hefted full beer kegs throughout his teen years as a brewer’s assistant. Martin “Farmer” Burns, a light-heavyweight (187 pounds) wrestler who lost only seven of his 6,000 wrestling matches in the late-nineteenth century, and who often hung himself from a seven-foot drop to demonstrate his tremendous neck strength, passed his grueling childhood in Midwestern lumber camps. The upbringing of all three men clearly formed an ontogenetic finishing school for their later phenomenal feats of strength.
* * *
A one-armed Tarzan
Those ferocious lions that Johnny Weissmuller wrestled in numerous Tarzan films were, luckily for him, all stuffed—not even the strongest Hollywood stuntman could have handled a real Panthera leo. Yet there is at least one genuine account of a man taking on, not a lion, but a leopard, hand-to-paw. This was the incredible fight between Belgian anthropologist Jean Pierre Hallet and a full-grown male leopard—a battle from which Hallet emerged victorious.
Hallet, at 66 tall and 254 pounds, was a giant of a man, yet he was also hampered by having just one arm (he’d lost the other while dynamiting for fish to feed starving African Pygmies). This proved no obstacle, however, when a leopard attacked his team of porters on an expedition in 1957. The gargantuan anthropologist simply jumped on the attacking cat’s back and locked its limbs with his own arm and legs. What followed was an epic 20-minute struggle as Hallet fought to stop the furious beast disemboweling him, and to simultaneously strangle it with his one arm. Even Hallet, however, wasn’t quite strong enough for that, so it wasn’t until a terrified porter threw a knife near him that Hallet was able to prevail. Even then it was another 10 minutes of violent fighting before the Belgian Tarzan could roll the leopard over to the knife, release its neck and front legs, and grab the knife to deliver the death blow.
* * *
Which is not to say, however, that there wasn’t room for an occasional, genuine, genetic freak among their number. One such prodigy, apparently, was Thomas Topham, the famous strongman who thrilled London audiences with his performances in the early eighteenth century. Topham stood a mere 5'9" tall, and weighed just 195 pounds, but his strength far outstripped that of much heavier men. He once, for example, lifted an obese (385 pound) English vicar overhead using just one arm; two-handed he was reportedly capable of hoisting a horse over a farmyard fence. On another occasion he bent, and unbent, an iron bar three inches in diameter (the unbending being the most difficult, since the muscles used are weaker). He also frequently broke ropes of 2,200-pound capacity and could smash a tobacco pipe by holding it lightly in the joint of his bent knee and simply flexing his tendons. Topham had been a carpenter in his youth, but it seems his incredible strength was not, this time, solely a matter of working toughness. As the pipe-breaking feat shows, Topham’s rock-hard muscles and tendons bulged to an unusual degree, meaning there was something different, probably genetically, about them. One observer confirmed this, stating that Topham, when stripped, appeared to be “extremely muscular” with armpits and hamstrings “full of muscles and tendons.” It could be that Topham’s muscles simply had a much greater cross-sectional area than average. Or it could even be that his genome carried some reverse mutation making his musculature closer to that of chimps and our common ancestor. Sadly, we’ll never know.
Topham’s case does raise an interesting question, though: what is the genetic future of male muscularity? We humans often think evolution and natural selection only happen to animals, or possibly to earlier versions of ourselves, yet a recent scientific analysis drawn from the international HapMap project (a study of human genetic variation, or haplotypes) found that the pace of genetic change in Homo sapiens has actually accelerated since the development of agriculture.14 Might muscularity be in for radical changes, too? Now that Homo masculinus modernus has achieved the couch-sitting, labor-shirking nirvana he has always lusted after and the selective pressure for muscularity has eased, might muscularity not eventually wither, like the residual eye-spots of cave-fish or the vestigial leg bones of whales?
Two conditions would be necessary for such an outcome. First, muscularity would have to be at least partly heritable. Second, there would need to be some selective mechanism by which a tendency toward muscularity could be either retained, or eliminated, from the gene pool. As it turns out, some aspects of muscularity (such as biceps circumference and jumping ability) do seem to be as much as 80 percent heritable—so, too, is the ability to add muscle through training. And, as it also happens, there are two selective agents operating on the level
of muscularity in male humans: sex and death.
The first of these, sexual selection, is the dirty little secret of our craze for male muscle. Many authors seem puzzled by our muscle obsession, putting it down to the influence of either ancient Greek art (in fact, the nineteenth-century father of bodybuilding, Prussian strongman Eugen Sandow, often did mimic muscular Greek statues in his public performances, coating himself with white powder for a marble effect) or, as Susan Faludi did in her book Stiffed, to an overcompensation for the loss of masculine relevance in physical work. There is a simpler explanation, however: instinct. The giveaway is that it is not just Western men and boys who obsess about muscularity—all males do. One study of Fijian boys, for example, found that nearly all aspired to a big, muscular build.15 Another found that even male Ariaal nomads of Kenya wanted more fat-free muscle, even though their real problem (given their chronic malnutrition) is a lack of fat.16 The preference also shows at a remarkably early age. A 1967 study of English schoolboys aged six to ten, for instance, found that by the age of eight over 80 percent wanted to grow up muscular, describing such ideal men as “strong,” “brave,” “friendly,” “smart,” “neat,” “honest,” and even “good-looking.”
There is a very good reason for all this instinctual craving for bigger muscles—women, which brings us back to sex. Those university-age men who reported a desire for 24 to 26 pounds more muscle said it was because women find muscularity attractive. This is true, but only partly. Other studies do show that many women find muscular men more sexually attractive than their scrawny counterparts, but only for certain sorts of sexual encounters. A survey of 286 Californian university women, for example, showed they preferred less-muscular men for long-term relationships, but more-muscular men for short-term ones.17 This was because they found muscular men more dominant and attractive, but also assumed they were therefore less trustworthy. Most of the women reported that their last short-term partner had been more muscular than their last long-term one. The women also slept with the short-term, muscular men much more quickly—within an average of 1 week, as opposed to 12 weeks for the less-muscular, long-term partners. These results seem to back up two of the report’s other findings, which otherwise might have been dismissed as mere macho boasting: that muscular men reported more sexual partners overall, as well as more encounters with women who were already mated.