Book Read Free

Swallow This

Page 16

by Joanna Blythman


  Phosphates are pretty essential kit for manufacturing boneless hams, chicken and turkey roll, bacon and charcuterie, but they are also used extensively in seafood processing. The delicate nature of seafood proteins causes them to denature far more rapidly than those of meat and poultry, and the Omega-3 fats in fish and shellfish are also highly prone to oxidation, which causes them to discolour as they age, first to yellow, then to brown, and finally blue. And who wants to eat old, stinky, matt-looking seafood when, as any good fishmonger will tell you, fresh fish should have a natural sparkle? Phosphates allow processors to extend the shelf life of seafood by preventing the protein degrading and so developing a tell-tale rancid flavour and changed colour.

  By dipping fish fillets in a solution of phosphates and water, seafood processors create a surface coating of dissolved proteins on the fillets, which then forms a protein glue when frozen. Result? As one phosphate company coyly puts it, the fillets will ‘retain natural juices for a longer period of time’, and of course, with all the water now soaked into them, the fish will weigh much more than it did to start with.

  While phosphate treatment makes a perceptible difference to the texture of meat, in shellfish the effect is particularly remarkable. A natural scallop, sold ‘dry’, that is not treated with phosphates, will be relatively small, with a fresh marine sweetness to it, and a pleasingly springy texture. The same scallop, sold ‘wet’, that is treated with phosphates, will look about twice the size, taste of next to nothing, and have a jellied consistency. When the FSA tested fresh raw scallops, it found that nearly half of samples tested contained more than 10 per cent added water, and some samples had as much as 54 per cent.

  Still, scallops pumped up with phosphates and water are extremely attractive to restaurateurs and chefs who want to cut their ingredient costs. The odd customer might notice that the bivalves were disappointing to eat and vaguely wonder why, but many more will tuck into them, feeling that they are getting a generous portion for the price.

  Phosphates are also used as a ‘processing aid’ for prawn shelling. They ‘solubilise’ the collagen protein that attaches the prawn to its shell so that the prawns exude less liquid when they are defrosted, yet the word phosphate does not have to appear on the label. Phosphates also play a vital role in the manufacture of mass-produced scampi, which are scraps of prawn ‘reformed’ to look like whole prawn tail, and surimi, the imitation crabmeat. Surimi is made by repeatedly washing a mulch of white fish, then adding a blend of phosphates, sweeteners such as sucrose and sorbitol, pink colouring and artificial crab flavouring. Without the last ingredient, by the time it goes through the manufacturing process, surimi would have no flavour whatsoever. You may not be aware of ever eating surimi, but it often turns up in the middle of sushi rolls. Masked by wasabi (pungent horseradish) and salty soy sauce, it supplies texture and colour, and its lack of flavour goes by unnoticed.

  Hydrocolloids, a group of gummy sweet starches, are another set of ingredients that bind flesh to water. In this group come carrageenan and agar (derived from seaweed), gum acacia and locust bean (from trees), guar gum, inulin, cellulose and konjac (from plants), xanthan (made by fermenting corn sugar with a bacterium), and pectin (from fruits). Hydrocolloids are used extensively in food processing, for making everything from ice cream and milk shake through to sauces and gravies. Just a small amount added to a recipe – only 1, or even 0.5 per cent – will make any liquid ingredient thicker and more viscous, and bind those that would otherwise split, ‘shear’ and separate out. A dash of xanthan gum, for instance, will stabilise the oil, water and vinegar emulsion in an off-the-shelf salad dressing.

  In the meat manufacturing business, hydrocolloids help do the all-important job of uniting bits of boned meat and water in a highly lucrative, sticky embrace. According to one company that supplies carrageenan, meat processors who use this gum can improve the ‘yield’ or weight of their products by as much as 100 per cent. Carrageenan is supplied to the trade in three different forms – kappa, iota and lambda – depending on how jellied a ‘mouthfeel’ is required. Hydrocolloids appeal to retailers too. Thanks to their binding properties, meat products that contain them cut very cleanly. Nice neat slices; no wastage; tidy profit margins.

  Hydrocolloids and phosphates are hardly cutting edge, and now many meat manufacturers prefer to substitute, or include in the brine formulation, a group of highly refined starchy fibres and flours with a high water-holding capacity, extracted from sources as diverse as wheat, soya, peas, bamboo, rice, potatoes and citrus. Commonly used in products such as sausages, pâtés, meatballs and meat pie fillings, the sales pitch for these flours and fibres is that they ‘tightly bind added water in processed meat products to improve yields and profits’. Their ‘sponge effect’ makes a big contribution to the weight of raw, boned poultry meat. One company with a buoyant business in the field claims that adding just half a kilo to 100 litres of brine ‘significantly reduces storage drip’. Plainly put, if your chicken supremes have had some starchy fibre added to their brine, they will hold added water and form less of a puddle when they defrost.

  Starchy fibres of this type are used to firm up, or, as the industry prefers to put it, ‘retexturise’ chicken products, such as Kievs and nuggets, that have been ‘restructured’. In ‘emulsion’ products, where meat is processed until it forms a slurry, a slightly more substantial dosage of starchy fibre will provide the much firmer consistency and bouncy ‘snap’ that allows a frankfurter or knackwurst to break cleanly in two.

  The makers of one such starchy fibre product, Swelite®, based on yellow peas, explain its function. The evocatively named Swelite® ‘improves the processability, stability, texture and yield of the final product’. Moreover, ‘it can replace 50 to 100% of a protein source while improving juiciness’. In other words, Swelite® allows meat processors to radically reduce the amount of meat needed in their recipe. Not for nothing is ‘making the most of meat’ the marketing slogan for Swelite®.

  The makers of another starch-based instant texturiser, Ultra Create, spell out its usefulness to manufacturers and caterers: ‘Ultra Create instant texturiser can help food processors and foodservice establishments quickly create delicious soups, sauces, gravies and dry mixes with minimal effort and energy’. Products made with this texturiser are ‘freeze/thaw stable, allowing foodservice establishments to prepare formulations in advance without concern about them breaking down or gelling during processing or reheating’, it explains. Note the ‘minimal effort and energy’ bit: that’s what food processing is all about.

  Soya protein is another useful ‘meat extender’ for manufacturers. It comes in the ready-to-use forms of flour, concentrate or protein isolate. This processed soya protein is typically extracted by washing soya flour in acid, in aluminium tanks, introducing the possibility that this heavy metal, which is known to be bad for the brain and the nervous system, can leach into the product. The chemical solvent, hexane – a component in glue and cement – is also used in the soya protein extraction process. Hexane is known to poison the nervous system, although the soya industry insists that no hexane residues find their way into the finished product.

  But why would manufacturers use such a controversial ingredient? Soya is the plant food that comes closest to having the texture of meat, and it has a prodigious ability to absorb water and fat. So, according to the UN’s Food and Agriculture Organization, it can be used to replace as much as 30 per cent of the meat in products such as sausages, pie fillings, meat sauces, ready meals and meatballs. And because soya proteins are considerably cheaper than meat, manufacturers have a strong financial reason to do so.

  Some manufacturers still use gelatine, a highly refined form of collagen, the protein found in animal tendons, ligaments and skin. Collagen is sticky stuff; the word comes from the ancient Greek ‘kolla’, meaning glue. It forms ‘stiff fibres of tremendous tensile strength’ and ‘loosely woven fibres, permitting expansion in all directions’. Gelatine is obtained fro
m animal carcasses after all their meat has been removed in the abattoir, in a chemical process that uses an acid or alkali solution, or enzymes, and water, to break down the raw material. If gelatine is used in a meat product, it has to be listed as an ingredient on the label, and these days it is beginning to look a bit last century. In recent years, meat manufacturers have begun to use a newer, ‘clean label’, more ‘functional’ form of collagen protein powder with a slightly different chemical structure, obtained in a chemical process where the proteins are extracted from the animal by-products using mechanical and heat treatment. Functional proteins of this type are rising stars in the contemporary meat processing firmament. In the language of food manufacturing, they guarantee improved ‘sliceability’, firmness and cohesiveness, producing that juicy, slightly resistant ‘mouthfeel’ that we associate with processed meats, and reduce ‘purge’ (the seepage of watery liquid into the product pack) by acting as a barrier to water loss. As one supplier of chemicals to food manufacturers puts it: ‘Proteins, thanks to their multi functionalities like solubility, viscosity, water binding, emulsifying, gelation, cohesion, foaming and elasticity, bring a specific impact to food systems.’

  Manufacturers have various methods for adding proteins to their products. In the case of fish fillets, these can be injected with a solution of fish protein hydrolysate (FPH) or homogenised fish proteins (HFP). Alternatively, these substances can be included in a brine. If you’re talking sausages or meatballs, then the protein powder can be added directly to the meat mix along with the corresponding amount of water to produce a springy consistency. Alternatively, the powder can be whisked with water until it forms a cloudy gel, which then sets to form a very firm jelly with the pliant ‘give’ of a stress ball. This substance, which looks white, beige or brown, depending on whether pig, cow or poultry collagen has been used, can then be canned, pasteurised and stored at room temperature until it is needed, ready for mixing into a range of ‘meat applications’, everything from burgers and chicken supremes to meat fillings and salami. Manufacturers also use a sprinkling of collagen powder to add heft, and a glossy thickness, to gravies and ready meals, such as a cottage pie or roast beef dinner.

  Protein powders are extremely attractive to meat processors for two reasons. Firstly, they allow for a more ‘natural’ label. The only ingredient listing needed will be ‘beef protein’, ‘poultry protein’ or ‘pork protein’, which is unlikely to cause alarm. We all know that we need protein to build muscles, right? Secondly, when reconstituted with water, protein powders can be used as a direct substitute for a significant proportion of the meat and fat in a formulation, and so, in the words of one company, ‘beef up their sales’.

  Here’s how the figures stack up. A manufacturer pays £1.85 a kilo for ‘beef trim’ (scraps of boned, frozen beef supplied ready for processing) but only £0.85 a kilo for beef protein powder. By replacing 10 per cent of the beef with protein powder and water, an industrial-size meat processing company using 200 tons of meat a week can make a significant weekly saving of £20,000. And with supermarkets exerting constant pressure on suppliers to keep their prices unfeasibly low, this is precisely the sort of cost adjustment that allows manufacturers to make some money. As one protein company puts it: ‘Functional proteins allow you to replace more expensive ingredients in your application, thereby reducing cost while increasing yield.’

  Food manufacturers can also choose functional proteins derived from blood, for instance plasma. The Belgian company, Veos, explains:

  Plasma proteins have an enormous water binding capacity. At temperatures above 65°C, the albumin proteins form a 3-dimensional network which becomes a strong and heat-stable gel. This gel-forming property, as well as the high solubility in brines, makes the protein-enriching product well suitable for injection in cooked hams [sic]. Plasma is also used in cuttered and ground meat products where a strong ‘meat bite’ is needed, especially when the meat product is eaten warm like frankfurters.

  Alternatively, in a deli counter pâté perhaps, globin might be more suitable:

  The allergen-free protein is an excellent emulsifier as it stabilises the water/fat/protein matrix [mix] in cuttered and ground meat products. By consequence, it prevents fat and water separation before, during and after cooking. In preparation of warm emulsions (like pâté, liver sausage) one part of globin stabilises 20 parts of hot water and 20 parts of hot fat. For emulsified products where we use cold raw materials, 1 part of globin easily binds 7 parts of fat and ice.

  Like collagen, a dash of added blood products does wonders for a manufacturer’s profit margins. They’re easy to get hold of too, ‘sold through a worldwide sales network in over 70 countries on six continents’.

  Transglutaminase, phosphates, hydrocolloids, starchy fibres, soya, gelatine, protein powders – meat processors can deploy a catholic selection of ingredients and processing aids to add water to meat. Many choose a belt and braces approach, using several of them at a time, along with other additives.

  Here are two typical formulations:

  A recipe for hot dogs

  Ingredients:

  Fatty meat (58%)

  Meat with tendons (7.2%)

  Bloodied cuts (actual wording) (7.2%)

  Water (21.4%)

  Functional premix (phosphate, monosodium glutamate [MSG], antioxidant, sodium citrate, colour) (1%)

  Wheat fibre (1%)

  Starch (2%)

  Spice mix (0.6%)

  Nitrite salt – a preservative (1.6%)

  A recipe for bacon brine

  Ingredients:

  Water (83.38%)

  Carrageenan (1.25%)

  Sodium nitrite – a preservative (0.10%)

  Sodium erythorbate – a preservative (0.50%)

  Dextrose – a sugar (1.50%)

  Sodium citrate – an antioxidant and acidity regulator (0.75%)

  Salt (9%)

  Phosphates (1.50%)

  Collagen protein (2.00%)

  Xanthan gum (0.02%)

  The business of adding water to meat is relatively easy when you’re talking about emulsified products, such as hot dogs and mortadella, or ‘comminuted’ products, like burgers, sausages and meatballs, because the meat is already minced up or pulverised, the cells have been broken down and are more absorbent. But special equipment is needed to encourage more intact cuts, hams or chicken breast for instance, to soak it up; ‘static absorption’, as it’s known in the meat business, just won’t do the trick.

  So manufacturers can ‘tumble’ the meat along with the brine in a vacuum machine that looks a bit like a sealed version of a drum concrete mixer. As the tumbler drum rotates, steel paddles inside it slowly move the meat pieces to create a mechanical massaging effect, which helps it absorb the watery solution and free protein from the meat tissue. Once heat treated or cooked, usually in plastic bags in steam or water baths, this semi-liquid protein, along with added chemicals, binds the meat pieces firmly together, making it look like one intact joint.

  A brine injector machine is another useful bit of kit. Meats are fed into it on a moving belt and injected repeatedly with the brine using several rows of needles that puncture the flesh, creating tiny cavities, and transporting the solution deep into the cells of the meat, effectively turning it into a sponge. Needle brine injectors are extensively used for processing boned bacon, ham and chicken breast, but not for whole birds, because the needles would puncture the skin and leave black marks. However, poultry processors can instead use injectors fitted with high-pressure nozzles to ‘inject’ the brine, so that the meat can pick up more water. The makers of one such machine claim that it can inject 12,000 chickens an hour, ‘without the hassle of blisters’.

  Whether they have been dipped, tumbled or injected, or had a sack load of binders added directly into the mix, many of the cured and ready-cooked meats we eat, however substantial they might feel, are awash with water, and when we buy them, we are paying through the nose for water laced with chemicals.
In 2013, when the Guardian revealed that major supermarkets were selling, perfectly legally, frozen chicken breasts with 18 per cent added water, the newspaper calculated that consumers who bought them would be paying about 65 pence a kilo for water. When the Daily Mail carried out its own investigation subsequently, it concluded that the figure was actually much higher, £1.54 a kilo to be precise.

  In the processed meat trade, the term ‘liquid lunch’ takes on a whole new meaning.

  11

  Starchy

  If you’re a dedicated home cook, you might have a packet of cornflour or arrowroot at the back of a cupboard – to make custard perhaps, or thicken a fruit sauce – but starch is not a core grocery item for most people. And why would it be? Starch is an uninspiring ingredient. This common carbohydrate derived from plant foods such as corn, wheat, potato, cassava and rice, is white, powdery, tasteless and odourless. In itself, it is a non-event, a heap of nothingness, about as exciting to eat as wallpaper paste; indeed, it is used for precisely that purpose.

  In food manufacturing, however, starch is essential kit, by far the most commonly used item in the food manufacturer’s box of tricks, as one authority explains: ‘Since their development in the 1940s, modified food starches have become a vital part of the food industry. Practically every category of food utilises the functional properties of starch to impart some important aspect of the final product.’

  It’s no exaggeration to say that the modern processed food industry is predicated on the stuff. This is why, when you turn to the ingredients listings on the massed ranks of manufactured foods, the word starch turns up with regularity, sometimes prefixed by a source, say, potato starch, or more often by the enigmatic word ‘modified’.

 

‹ Prev