Still the Iron Age

Home > Other > Still the Iron Age > Page 31
Still the Iron Age Page 31

by Vaclav Smil


  23. ASME (The American Society of Mechanical Engineers). Oxygen process steel-making vessel New York, NY: ASME; 1985; .

  24. Ausubel JH, Waggoner PE. Dematerialization: Variety, caution, and persistence. Proceedings of the National Academy of Sciences. 2008;105:12774–12779.

  25. Avery DH, Schmidt PR. A metallurgical study of the iron bloomery, particularly as practiced in Buhaya. Journal of Metals. 1979;31(9):14–20.

  26. Aylen, J. (2002). The Continuing Story of Continuous Casting. Keynote address to 4th European Continuous Casting Conference, Birmingham.

  27. Babcock FL. Spanning the Atlantic New York, NY: Alfred A. Knopf; 1931.

  28. Babich A, Senk D, Fernandez M. Charcoal behavior by its injection into the modern blast furnace. ISIJ International. 2010;50:81–88.

  29. Bagsarian T. Unveiling Project M. New Steel 1998:1–5 December 1998.

  30. Bagsarian T. Strip casting gets serious. New Steel 2000:1–7 December 2000.

  31. Bagsarian T. Blast furnace’s next frontier: 20-year campaigns. New Steel 2001:1–6 July 2001.

  32. Bailis R, et al. Innovation in charcoal production: A comparative life-cycle assessment of two kiln technologies in Brazil. Energy for Sustainable Development. 2013;17:189–200.

  33. Baltic S, Hilliard D. Steel vs aluminum in automotive lightweighting. Insight Global Metals Trends 2013:9–12 May 2013.

  34. Barrena MI, Gómez de Salazar JM, Soria A. Roman iron axes manufacturing technology. Nuclear Instruments and Methods in Physics Research B. 2008;266:955–960.

  35. Bayley J, Dungworth D, Paynter S. Archaeometallurgy London: English Heritage; 2001.

  36. BEA (Bureau of Economic Analysis). (2015). Gross Domestic Product (GDP). .

  37. Becher B, Becher H. Blast furnaces Cambridge, MA: MIT Press; 1990.

  38. Becher B, Becher H. Hochöffen München: Schirmer/Mosel; 2002.

  39. Beckett, C. A. (2012). Thomas Edison’s beautiful failure. .

  40. Belford P. Five centuries of iron working: Excavations at Wednesbury Forge. Post-Medieval Archaeology. 2010;44/1:1–53.

  41. Bell L. Principles of the manufacture of iron and steel London: George Routledge & Sons; 1884.

  42. Berry B, Ritt A, Greissel M. A retrospective of twentieth-century steel. Iron Age New Steel 1999:1–14 November 1999.

  43. Berry RS, Fels M. The energy cost of automobiles. Bulletin of the Atomic Scientists 1973; December 1973: 11–17, 58–60.

  44. Bessemer H. On the manufacture of continuous sheets of malleable iron and steel, direct from the fluid metal. Journal of the Iron and Steel Institute. 1891;6(10):23–41.

  45. Besta P, et al. The effect of harmful elements in production of iron in relation to input and output material balance. Metalurgija. 2012;51:325–328.

  46. BIR (Bureau of International Recycling). World steel recycling in figures 2009–2013 Brussels: BIR; 2014; .

  47. Birat, J.-P. (2010). ULCOS program: Status and progress. .

  48. Birch A. The economic history of the British iron and steel industry 1784–1879 London: Cass; 1967.

  49. Birch A. The economic history of the british iron and steel industry London: Cass; 1968.

  50. Biringuccio, V. (1540). De la pirotechnia. English translation: The Pirotechnia, translated by C. S. Smith and M. T. Gnudi, New York, NY: Basic Books, 1959.

  51. Biswas AK. Iron and steel in pre-modern India: A critical review. Indian Journal of History of Science. 1994;29:579–610.

  52. Blaenavon World Heritage Site. (2015). The Gilchrist–Thomas process. .

  53. Boesenberg JS. Wrought iron from the USS Monitor: Mineralogy, petrology and metallography. Archaeometry. 2006;48:613–631.

  54. Bone WA. The centenary of James B Neilson’s invention of hot-blast in iron smelting. Nature. 1928;122:317–319.

  55. Börjesson P, Gustavsson L. Greenhouse gas balances in building construction: Wood versus concrete from life-cycle and forest land-use perspective. Energy Policy. 2000;28:575–588.

  56. Boustead I, Hancock GF. Handbook of industrial energy analysis Chichester: Ellis Horwood; 1979.

  57. Bowman J. Andrew Carnegie: Steel tycoon Englewood Cliffs, NJ: Silver Burdett; 1989.

  58. Boylan M. Economic effects of scale increases in the steel industry: The case of U.S blast furnaces New York, NY: Praeger; 1975.

  59. Boylston HM. An introduction to the metallurgy of iron and steel New York, NY: John Wiley; 1936.

  60. BP (British Petroleum), 2015. BP Statistical Review of World Energy. .

  61. Brazilian Mining Association, 2015. Annual Report. .

  62. Brown HL, Hamel BB, Hedman BA. Energy analysis of 108 industrial products Lilburn, GA: Fairmont Press; 1996.

  63. Brown S, Schroeder P, Birdsey R. Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development. Forest Ecology and Management. 1997;96:37–47.

  64. Brunke J-C, Blesl M. A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry. Energy Policy. 2014;67:431–446.

  65. Bryson WE. Heat treatment, selection, and application of tool steels Cincinnati, OH: Hanser Gardner Publications; 2005.

  66. Buchwald VF. Slag analysis as a method for the characterization and provenancing of ancient iron objects. Materials Characterization. 1998;40:73–96.

  67. Buckingham, D. A. (2006). Steel stocks in use in automobiles in the United States. .

  68. Bulasová, A. et al. (2014). Projekt kubismus. .

  69. Burchart-Korol D. Life cycle assessment of steel production in Poland: A case study. Journal of Cleaner Production. 2013;54:235–243.

  70. Burchart-Korol D, Kruczek M. Water scarcity assessment of steel production in national integrated steelmaking route. Metalurgija. 2015;54:276–278.

  71. Burgo JA. The manufacture of pig iron in blast furnace. In: Wakelin DA, ed. The making, shaping and treating of steel, ironmaking volume. Pittsburgh, PA: The AISE Foundation; 1999:699–739.

  72. Burton RF. The book of the sword London: Chatto and Windus; 1884.

  73. Burwell CC. High-temperature electroprocessing: Steel and glass. In: Schurr SH, ed. Electricity in the American Economy. New York: Greenwood Press; 1990:109–129.

  74. Campbell HR. The manufacture and properties of iron and steel New York, NY: Hill Publishing; 1907.

  75. Cannon, W. F. (2011). The Lake Superior Iron Ranges: Geology and Mining. .

  76. Carlton D, Perloff J. Modern industrial organisation Upper Saddle River, NJ: Pearson; 2005.

  77. Carnegie Steel Company. Carnegie steel company: General statistics and special treatise on homestead steel works Pittsburgh, PA: Carnegie Steel Company; 1912; .

  78. Caron F. Dynamics of innovation: The expansion of technology in modern times New York, NY: Berghahn; 2013.

  79. CCTV. (2014). China steel price. October 17, 2014, .

  80. Chen W, Graedel TE. Anthropogenic cycles of the elements: A critical review. Environmental Science & Technology. 2012;46:8574–8586.

  81. Ch
en W, Yin X, Ma D. A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions. Applied Energy. 2014;136:1174–1183.

  82. Chernykh EN. Metallurgical provinces of Eurasia in the early metal age: Problems of interrelation. ISIJ International. 2014;54:1002–1009.

  83. CLIA (Cruise Line International Association). (2104). Cruise industry investment in ship innovations. .

  84. CMI (Can Manufacturers Institute). (2013). Food cans overview. .

  85. CNI (National Confederation of Industry). 2012. Steel industry in Brazil. .

  86. Cobb HM. The history of stainless steel Materials Park, OH: ASM International; 2010.

  87. Cossons N, Trinder B. The iron bridge: Symbol of the industrial revolution Bradford on Avon: Moonraker Press; 1979.

  88. Cowper, E. A. (1866). On the effect of blowing blast furnaces with blast of very high temperatures. In: Report of the 35th meeting of the British Association for the advancement of science. London: John Murray, p. 177.

  89. Craddock PT. Early metal mining and production Edinburgh: Edinburgh University Press; 1995.

  90. Credit Suisse. (2012). Have we reached “Peak Steel” demand in China? We think not. .

  91. Crossley DW, ed. Medieval industry. London: Council for British Archaeology; 1981.

  92. Cullen JM, et al. Mapping the global flow of steel: From steelmaking to end-use goods. Environmental Science & Technology. 2012;46:13048–13055.

  93. Dahlström K, et al. Iron, steel and aluminium in the UK: Material flows and their economic dimensions Guildford: University of Surrey; 2004.

  94. Dai Y, Gutierrez T. Smog choking Chinese steel. Insight 2014:4–7 May 2014.

  95. Daimler. (2015). The birth of the automobile. The 35-hp Mercedes, the first modern automobile (1900–1901). .

  96. Danieli Corus. (2014). Pulverized coal injection. .

  97. Danloy, G. et al. (2008). Heat and mass balance in the ULCO blast furnace. Proceedings of the 4th ULCOS Seminar, October 1–2, 2008. .

  98. Dartnell J. Coke in the blast furnace. Ironmaking and Steelmaking. 1978;1978(1):18–21.

  99. Davis JJ. The iron puddler, my life in the rolling mills and what came of it New York, NY: Grosset and Dunlap; 1922.

  100. De Beer J, Worrell E, Blok K. Future technologies for energy-efficient iron and steel making. Annual Review of Energy and the Environment. 1998;23:123–205.

  101. DECC (Department of Energy & Climate Change). (2014). Historical coal data: Coal production, 1853 to 2013. .

  102. Derui T, Haiping L. The ancient Chinese casting techniques. Foundry World. 2011;8:127–133 .

  103. De Ryck I, Adriaens A, Adams F. An overview of Mesopotamian bronze metallurgy during the 3rd millennium BC. Journal of Cultural Heritage. 2005;6:261–268.

  104. Diderot D, D’Alembert JLR. L’Encyclopedie ou dictionnaire raisonne des sciences des arts et des metiers Paris: Avec Approbation and Privilege du Roy; 1751–1777.

  105. Díez MA, Alvarez R, Barriocanal C. Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. International Journal of Coal Geology. 2002;50:389–412.

  106. Dogs of the Dow. (2015). .

  107. Domergue C. Un centre sidérurgique romain de la Montagne noire Le Domaine des forges (Les Martys, Aude) Paris: Editions du CNRS; 1993.

  108. Drougas A. Investigation of the use of iron in construction from antiquity to the technical revolution Barcelona: Universitat Politecnica de Catalunya; 2009.

  109. Dumpleton B, Miller M. Brunel’s three ships Melksham: Colin Venton; 1974.

  110. Dunayevskaya R. An analysis of Russian economy. The New International. 1942;8(11):327–332.

  111. Egenhofer C, et al. The steel industry in the European Union: Composition and drivers of energy prices and costs Brussels: Center for European Policy Studies; 2013; .

  112. Egerton W. Indian and oriental armour London: W.H. Allen; 1896.

  113. Elbaum B. How godzilla ate Pittsburgh: The long rise of the Japanese iron and steel industry, 1900–1973. Social Science Japan Journal. 2007;10:243–264.

  114. Emerick HB. European oxygen steelmaking is of far-reaching significance. Journal of Metals. 1954;6:803–805.

  115. Emi T. Steelmaking technology for the last 100 years: Toward highly efficient mass production systems for high quality steels. ISIJ International. 2015;55:36–66.

  116. Emmerich FG, Luengo CA. Babassu charcoal: A sulfurless renewable thermo-reduction feedstock for steelmaking. Biomass and Bioenergy. 1996;10:41–44.

  117. Evans C, Jackson O, Rydén G. Baltic iron and the British iron industry in the eighteenth century. Economic History Review. 2002;55:642–665.

  118. Evelyn J. Sylva or a discourse of forest-trees and the propagation of timber London: John Martyn; 1664.

  119. FAO. (1983). Use of charcoal in blast furnace operations. .

  120. FAO. Forest products 2008–2012 Rome: FAO; 2014.

  121. Felkins K, Leighly HP, Jankovic A. The royal mail ship Titanic: Did a metallurgical failure cause a night to remember? JOM. 1998;50:12–18.

  122. Fell A. The early iron industry of furness and district London: Frank Cass; 1908.

  123. Fenske G. The skyscraper and the city: The Woolworth building and the making of modern New York Chicago: University of Chicago Press; 2008.

  124. Ferreira OC. The future of charcoal in metallurgy. Energy & Economy. 2000;21:1–5.

  125. Fenton, M. D. (2014). Iron and steel scrap in December 2014. .

  126. Feuerbach A. Crucible damascus steel: A fascination for almost 2,000 years. Journal of Metals May. 2006:48–50.

  127. Feuerstein, G. (1998). Brooklyn Bridge facts, history, and information. .

  128. Field FF, et al. Automobile recycling policy: Background materials Davos: International Motor Vehicle Program; 1994.

  129. Figiel LS. On damascus steel Atlantis, FL: Atlantis Art Press; 1991.

  130. Fischedick M, et al. Techno-economic evaluation of innovative steel production technologies. Journal of Cleaner Production. 2014;84:563–580.

  131. Flandrin J. Distinction through taste. In: Ariès P, Duby G, eds. A history of private life III passions of the renaissance. Cambridge, MA: Harvard University Press; 1989:265–307.

  132. Flemings MC, Ragone DV. Puddling: A new look at an old process. ISIJ International. 2009;49:1960–1966.

  133. Ford. (1909). Watch the Ford Go By. .

  134. Forth Bridges. (2013). Forth bridges. .

  135. Fruehan RJ, et al. Theoretical minimum energies to produce steel for selected conditions Columbia, MD: Energetics; 2000; .

  136. Fruehan RJ. New steelmaking processes: Drivers, requirements and potential impact. Ironmaking and Steelmaking. 2005;32:3–8.

  137. Fry H. The history of North Atlantic steam navigation: With
some account of early ships and shipowners London: Sampson Low, Marston and Company; 1896.

  138. Fujitsuka, N. et al. (2013). Dynamic modeling of world steel cycle toward 2050. .

  139. Galán J, et al. Advanced high strength steels for automotive industry. Revista de Metalurgia. 2012;48:118–131.

  140. Gale J, Freund P. Greenhouse gas abatement in energy intensive industries Paris: IEA; 2001.

  141. Gao C, et al. Optimization and evaluation of steel industry’s water-use system. Journal of Cleaner Production. 2011;19:564–569.

  142. Gatrell P, Harrison M. The Russian and Soviet economy in two world wars. Economic History Review. 1993;46:425–452.

  143. Geerdes M, Toxopeus H, van der Vliet C. Modern blast furnace ironmaking Amsterdam: IOS Press; 2009.

  144. Gervásio H, et al. Comparative life cycle assessment of tubular wind towers and foundations—Part 2: Life cycle analysis. Engineering Structures. 2014;74:292–299.

  145. Ghenda, J. T. (2014). Review of the EU ETS Post-2020: Impact assessment on the EU steel sector. .

  146. Ginley DS, Cahen D, eds. Fundamentals of materials for energy and environmental sustainability. Cambridge: Cambridge University Press; 2012.

  147. Godfrey E, van Nie M. A Germanic ultrahigh carbon steel punch of the Late Roman-Iron Age. Journal of Archaeological Science. 2004;31:1117–1125.

  148. Gold B, et al. Technological progress and industrial leadership: The growth of the U.S steel industry, 1900–1970 Lexington, MA: D.C. Heath and Company; 1984.

  149. Goldsworthy, T., & Gull S. (2002). HIsmelt—The new technology for iron production. .

  150. González RF, et al. Stone decay in 18th century monuments due to iron corrosion The Royal Palace, Madrid (Spain). Building and Environment. 2004;39:357–364.

  151. Government of India. (2012). National Steel Policy 2012 (Draft).

‹ Prev