Still the Iron Age

Home > Other > Still the Iron Age > Page 32
Still the Iron Age Page 32

by Vaclav Smil

.

  152. Grazzi F, et al. Ancient and historic steel in Japan, India and Europe, a non-invasive comparative study using thermal neutron diffraction. Analytical and Bioanalytical Chemistry. 2011;400:1493–1500.

  153. Greenpeace. Driving destruction in the Amazon: How steel production is throwing the forest into the furnace Amsterdam: Greenpeace International; 2013; .

  154. Greenwood WH. Iron London: Cassell and Company; 1907.

  155. Greissel M. The power of oxygen. New Steel. 2000;16(4):24–30.

  156. Guglielmini A, Degel R. Direct ironmaking via rotary hearth furnace and new smelting technology Brussels: European Commission; 2007.

  157. Guo Z, Xu Z. Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China. Energy. 2010;35:4356–4360.

  158. Haaland R, Shinnie P, eds. African iron working—Ancient and traditional. Oslo: Norwegian University Press; 1985.

  159. Haapakangas J, et al. A method for evaluating coke hot strength. Fuel. 2011;90:384–388.

  160. Haga T. The latest trend of ironmaking technology in Japan: Relining of Oita No 2 BF (The Largest BF in the world) Tokyo: Nippon Steel Corporation; 2004.

  161. Halder, S. (2011). An experimental perspective on Praxair’s hot oxygen technology to enhance pulverized solid fuel combustion for ironmaking blast furnaces. .

  162. Hall CGL. Steel phoenix: The fall and rise of the U.S steel industry New York, NY: St. Martin’s Press; 1997.

  163. Haller W. Industrial restructuring and urban change in the Pittsburgh region: developmental, ecological, and socioeconomic trade-offs. Ecology and Society. 2005;10(1):13 [online] URL: .

  164. Hammersley G. The charcoal iron industry and its fuel, 1540–1750. Economic History Review. 1973;24:593–613.

  165. Hammervold J, Reenaas M, Brattebø H. Environmental life cycle assessment of bridges. Journal of Bridge Engineering. 2013;18:153–161.

  166. Harada T, Tanaka H. Future steelmaking model by direct reduction techniques. ISIJ International. 2011;51:1301–1307.

  167. Harding, A. (2014). Rio Tinto: generating significant business value. .

  168. Harris JR. The British iron industry 1700–1850 London: Macmillan; 1988.

  169. Hartman JM. Regenerative stoves—A sketch of their history and notes on their use Englewood, CO: American Institute of Mining Engineers; 1980.

  170. Hasanbeigi A, et al. A comparison of iron and steel production energy use and energy intensity in China and the US Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory; 2011; .

  171. Hasanbeigi A, et al. Comparison of iron and steel production energy use and energy intensity on China and the US. Journal of Cleaner Production. 2014;65:108–119.

  172. Hasanbeigi, A., Price, L., & Arens M. (2013). Emerging energy-efficiency and carbon dioxide emissions-reduction technologies for the iron and steel industry. Ernest Orlando Lawrence Berkeley National Laboratory, .

  173. Hatayama H, et al. Outlook of the world steel cycle based on the stock and flow dynamics. Environmental Science & Technology. 2010;44:6457–6463.

  174. Hattori R, et al. Estimation of in-use steel stock for civil engineering and buildings using nighttime light images. Resources, Conservation and Recycling. 2013;31:58–68.

  175. Heal DW. Modern perspectives on the history of fuel economy in the iron and steel industry. Ironmaking and Steelmaking.1975(4):222–227.

  176. Herrigel G. Manufacturing possibilities: Creative action and industrial recomposition in the United States, Germany, and Japan New York, NY: Oxford University Press; 2010.

  177. Hess GW. Is the blast furnace in its twilight? Iron Age. 1989;5(11):16–26.

  178. Hessen R. Steel titan: The life of Charles M Schwab New York, NY: Oxford University Press; 1975.

  179. Heuss, R., et al. (2012). Lighweight, heavy impact. .

  180. Hidalgo I, et al. Energy consumption and CO2 emissions from the world iron and steel industry Brussels: EU; 2003; .

  181. Hitachi Metals. (2014). Tale of the Tatara. .

  182. Hoffmann, H. (1953). Die chemische Veredlung der Steinkohle durch Verkokung. .

  183. Hoffmann, O. (2012). Steel lightweight materials and design for environmental friendly mobility. .

  184. Hogan WT. Economic history of the iron and steel industry in the United States. vol. 5 Lexington, MA: Lexington Books; 1971.

  185. Höganäs. 2015. Höganäs. .

  186. Holl AFC. Early West African metallurgies: New data and old orthodoxy. Journal of World Prehistory. 2009;22:425–438.

  187. Horie S, et al. Comparison of water footprint for industrial products in Japan, China and USA. In: Finkbeiner M, ed. Towards life cycle sustainability management. Berlin: Springer Verlag; 2011:155–160.

  188. HSBEC (Honshu-Shikoku Bridge Expressway Company). (2015). Introduction of Akashi-Kaikyo Bridge. .

  189. Hsu F, et al. Estimation of steel stock in building and civil construction by satellite images. ISIJ International. 2011;51:313–319.

  190. Hsu F, Elvidge CD, Masuno Y. Exploring and estimating in-use steel stocks in civil engineering and buildings from night-time lights. International Journal of Remote Sensing. 2015;34:490–504.

  191. Hu M, et al. Iron and steel in Chinese residential buildings: A dynamic analysis. Resources, Conservation and Recycling. 2010;54:591–600.

  192. Hua J. The mass production of iron castings in ancient China. Scientific American. 1983;248:120–128.

  193. Huang N. China will overtake Britain Beijing: Foreign Languages Press; 1958.

  194. Hudson HD. The rise of the Demidov family and the Russian iron industry in the eighteenth century Newtonville, MA: Oriental Research Partners; 1986.

  195. Hyde CK. Technological change and the British iron industry 1700–1870 Princeton, NJ: Princeton University Press; 1977.

  196. IEA. Iron and steel. IEA ETSAP Technology Brief 102 2010; .

  197. IEA. CO2 abatement in the iron and steel industry London: IEA; 2012; .

  198. IEA (International Energy Agency). (2008). Energy technology perspectives. .

  199. IETD (Industrial Efficiency Technology Database). (2015). Blast furnace system. .

  200. IFIAS (International Federation of Institutes for Advanced Study). Energy analysis workshop on methodology and conventions Stockholm: IFIAS; 1974.

  201. Iida K. Origin and development of iron and steel technology in Japan Tokyo: The United Nations University; 1980.

  202. IIMA (International Iron Metallics Association). (2014). Pig iron. .

  203. IMF (International Monetary Fund). (2015). Principal global indicators. .

  204. IMO (International Maritime Organization). 2015. The Hong Kong International Convention for the Safe a
nd Environmentally Sound Recycling of Ships. .

  205. Ingham JN. The iron barons: A social analysis of an American urban elite, 1874–1965 Westport, CT: Greenwood Press; 1978.

  206. INMETCO. (2015). INMETCO: Recycling to sustain our natural resources. .

  207. IPCC. 2006 Guidelines for national greenhouse gas inventories Geneva: IPCC; 2006; .

  208. IPCC. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change Geneva: IPCC; 2007; .

  209. ISO (International Organization for Standardization). The new international standards for life cycle assessment Geneva: ISO; 2006.

  210. ISSF (International Stainless Steel Forum). (2015). Stainless steel bars & wires in electronics. .

  211. Iwasaki M, Matsuo M. Change and development of steelmaking technology. Nippon Steel Technological Report. 2012;101:89–94 .

  212. Jamasmie, C. (2014). Australia, Brazil to control 90% of global iron trade by 2020. .

  213. Jeans W. The creators of the age of steel London: Chapman and Hall; 1884.

  214. Jensen AA, et al. Life cycle assessment (LCA): A guide to approaches, experiences and information sources Copenhagen: European Environment Agency; 1998.

  215. Jernkontoret. (2014). A glance at the Swedish steel industry. .

  216. JISF (The Japan Iron and Steel federation). (2015). Japanese steel production. .

  217. Jody, B. J., et al. (2009). Recycling end-of-life vehicles of the future. .

  218. Johannsen O. Geschichte des Eisens Dusseldorf: Verlag Stahleisen; 1953.

  219. Johnson J, et al. The energy benefit of stainless steel recycling. Energy Policy. 2008;36:181–192.

  220. Jones, A. (2014). International market for metallurgical coke. Steelhome Annual Conference, Shanghai, April 2014.

  221. Jones JAT. Electric arc furnace steelmaking Pittsburgh, PA: AISI; 2003.

  222. Jones JAT, Bowman B, Lefrank PA. Electric furnace steelmaking. In: Fruehan RJ, ed. The making, shaping and treating of steel. Pittsburgh, PA: The AISE Steel Foundation; 1998:525–660.

  223. JRC (Joint Research Center). (2011). 2011 Technology map of the European Strategic Energy Technology Plan. Brussels: European Commission. .

  224. Juleff G. An ancient wind-powered iron smelting technology in Sri Lanka. Nature. 1996;379:60–63.

  225. Juleff G. Technology and evolution: A root and branch view of Asian iron from first-millennium BC Sri Lanka to Japanese steel. World Archaeology. 2009;41:557–577.

  226. Kakela PJ. Iron ore: From depletion to abundance. Science. 1981;212:132–136.

  227. Kanno R, et al. Steels, steel products and steel structures sustaining growth of society (infrastructure field). Nippon Steel Technical Report. 2012;101:57–67.

  228. Kato M, et al. World at work: Charcoal producing industries in northeastern Brazil. Occupational and Environmental Medicine. 2005;62:128–132.

  229. Kato K, et al. Nippon Steel Corporation developed a new technology for waste plastic recycling process using coke ovens. Nippon Steel Technical Report. 2006;94:75–79.

  230. Kawahara K, et al. Estimation of world steel demand and in-use stock for ships. Tetsu to Hagane. 2012;98:27–34.

  231. Kawaoka K, et al. Latest blast furnace relining technology at Nippon Steel. Nippon Steel Technical Report No. 2006;94:127–132.

  232. Keii M, et al. Structural outline of terrestrial digital broadcasting tower. Steel Construction Today & Tomorrow. 2010;31:5–9.

  233. Kelly TD, Matos GR. Compilers. Historical statistics for mineral and material commodities in the United States Washington, DC: USGS; 2014; .

  234. Kim S, et al. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature. 2015;518:77–79.

  235. King CD. Seventy-five years of progress in iron and steel New York, NY: American Institute of Mining and Metallurgical Engineers; 1948.

  236. King P. The production and consumption of bar iron in early modern England and Wales. Economic History Review. 2005;58:1–33.

  237. King P. The choice of fuel in the eighteenth century iron industry: The Coalbrookdale accounts reconsidered. Economic History Review. 2011;64:132–156.

  238. Knop, K., Hallin, M., & Burström E. (2008). ULCORED SP 12: Concept for minimized CO2 emission. .

  239. Kobelco. (2015a). FASTMET process. .

  240. Kobelco. (2015b). lTmk3: Process summary. .

  241. Kozawa S, Tsukihashi F. Analysis of global demand for iron source by estimation of in-use steel stock. ISIJ International. 2011;51:320–329.

  242. Kubo Y, et al. Steel sheet for the better human life (application for household electrical appliances, OA equipment). Nippon Steel Technical Reports. 2012;101:48–56 .

  243. Kumakura M. Advances in steel refining technology and future prospects. Nippon Steel Technical Report. 2013;104:5–12.

  244. Landau SB, Condit CW. Rise of the New York skyscraper, 1865–1913 New Haven, CT: Yale University Press; 1996.

  245. Laplace Conseil. Impacts of energy market developments on the steel industry. Paris: Laplace Conseil; 2013; .

  246. Lech Stahlwerke. (2011). Umweltbericht 2009/2010. .

  247. Leckie AH, Millar A, Medley JE. Short- and long-term prospects for energy economy in steelmaking. Ironmaking and Steelmaking. 1982;9:222–235.

  248. Lee B, Sohn I. Review of innovative energy savings technology for the electric arc furnace. JOM. 2014;66:1581–1594.

  249. Lei, Q. (2011). The Development of China’s Cement Industry. .

  250. Lenzen M, Dey C. Truncation error in embodied energy analyses of basic iron and steel products. Energy. 2000;25:577–585.

  251. Lenzen M, Treloar G. Embodied energy in buildings: Wood versus concrete—reply to Börjesson and Gustavsson. Energy Policy. 2002;30:249–255.

  252. Li L, et al. Comprehensive evaluation of OxyCup process for steelmaking dust treatment based on calculation of mass balance and heat balance. International Journal of Iron and Steel Research. 2014;21:575–582.

  253. Li W, Yang DT. The great leap forward: Anatomy of a central planning disaster. Journal of Political Economy. 2005;113:840–877.

  254. Lo F, et al. Chinese sustainable development framework summary report Tokyo: UNU/IAS; 1999.

  255. Lord W. Titanic: A night to remember New York, NY: R&W Holt; 1955.

  256. Lovis JB. The blast furnaces of sparrows point: One hundred years of ironmaking on Chesapeake Bay Easton, PA: Canal History and Technology; 2005.

  257. Luiten, E. E. M. (2001). Beyond energy efficiency. Actors, networks and government intervention in the development of industrial process technologies. Utrecht: Utrecht University.

  258. Lüngen, H. B. (2013). Trends for r
educing agents in blast furnace operation. .

  259. Madias J. Electric furnace steelmaking. Treatise on Process Metallurgy Volume. 2014;3:271–300.

  260. Madureira NL. The iron industry energy transition. Energy Policy. 2012;50:24–34.

  261. Maillart R. Ponts-voûtes en béton armé De leur développement et de quelques constructions spéciales exécutées en Suisse. Travaux. 1935;26:64–71.

  262. Mandal GK, et al. A steady state thermal and material balance model for an iron making blast furnace and its validation with operational data. Transactions of the Indian Institute of Metallurgy. 2014;67:209–221.

  263. Manning CP, Fruehan RJ. Emerging technologies for iron and steelmaking. JOM. 2001;53:2023.

  264. Mao Z. Miscellany of mao zedong thought Washington, DC: JPRS; 1969.

  265. Markus Engineering Services. Cradle-to-gate life cycle inventory: Canadian and US steel production by mill type Ottawa: Markus Engineering Services; 2002; .

  266. Matsui Y, Terashima K, Takahashi R. Analysis of scale-up of a shaft furnace by process engineering—From the iron-manufacturing experiment by using Bei-Tetsu in Hippo Tatara. ISIJ International. 2014;54:1051–1058.

  267. Maupin M, et al. Estimated use of water in the United States in 2010 Washington, DC: USGS; 2014.

  268. Mašlejová A. Utilization of biomass in ironmaking Brno: MeTal; 2013. .

  269. McCallum HD, McCallum FT. The wire that fenced the west Norman, OK: University of Oklahoma Press; 1955.

  270. McCelland J. Not all RHFs are created equal. Direct from MIDREX 2nd Quarter. 2002:3–6.

  271. McCloskey DN. Economic maturity and entrepreneurial decline: British iron and steel 1870–1913 Cambridge, MA: Harvard University Press; 1973.

  272. McKinsey. (2010). Short-selling the earth? .

  273. McKinsey. (2013a). Competitiveness and challenges in the steel industry.

‹ Prev