Still the Iron Age

Home > Other > Still the Iron Age > Page 34
Still the Iron Age Page 34

by Vaclav Smil


  399. Smil V, Nachman P, Long TV. Energy analysis and agriculture: An application to U.S corn production Boulder, CO: Westview Press; 1983.

  400. Smithson DJ, Sheridan AT. Energy use in mill areas. Ironmaking and Steelmaking. 1975;4:286–294.

  401. Sohn I, Fruehan RJ. The reduction of iron oxides by volatiles in a rotary hearth furnace process. Metallurgical and Materials Transactions B. 2006;37:223–229.

  402. SRI. (2015). Steel is North America’s #1 recycled material. .

  403. SRI (Steel Recycling Institute). (2014). 2013 steel recycling rates. .

  404. Stahlinstitut der VDEh. (2013). Beitrag der Stahlindustrie zu Nachhaltigkeit, Ressourcen- und Energieeffizienz. .

  405. Stahlinstitut VDEh. (2014). Fakten zur Stahlindustrie in Deutschland. .

  406. Starratt FW. LD … in the beginning. Journal of Metals. 1960;12:528–530.

  407. Steel Benchmarker. (2015). Price history: Tables and charts. .

  408. Steel Framing Alliance. (2007). A builder’s guide to steel frame construction. .

  409. Steel Times International. (2013). HIsmelt plant goes to China. .

  410. Steiger, R. W. (1999). Edison’s concrete dream. .

  411. Straker E. Wealden iron New York, NY: Augustus M. Kelley; 1969.

  412. Stubbles J. Energy use in the U.S steel industry: An historical perspective and future opportunities Columbia, MD: Energetics; 2000.

  413. Stubbles J. EAF steelmaking—past, present and future. Direct from MIDREX. 2000;3:3–4.

  414. Stubbles, J. (2015). The Basic Oxygen Steelmaking (BOS) Process. .

  415. Sugawara T, et al. Construction and operation of No 5 blast furnace, Fukuyama Works, Nippon Kokan KK. Ironmaking and Steelmaking. 1986;3:241–251.

  416. Sullivan, D.E. (2005). Metal stocks in use in the United States. .

  417. Sundholm JL, et al. Manufacture of metallurgical coke and recovery of coal chemicals. In: Wakelin DA, ed. The making, shaping and treating of steel, ironmaking volume. Pittsburgh, PA: The AISE Foundation; 1999:381–545.

  418. Suopajärvi H, Fabritius T. Towards more sustainable ironmaking—An analysis of energy wood availability in Finland and the economics of charcoal production. Sustainability. 2013:1188–1207.

  419. Svensson E, et al. The crofter and the iron works: The material culture of structural crisis, identity and making a living on the edge. International Journal of Historical Archaeology. 2009;13:183–205.

  420. Szekely J. Can advanced technology save the U.S steel industry? Scientific American. 1987;257(1):34–41.

  421. Takahashi M, et al. Steels and their applications for life satisfaction and transportation. Nippon Steel Technical Report. 2012;101:27–36.

  422. Takahashi M. Sheet steel technology for the last 100 years: Progress in sheet steels in hand with the automotive industry. ISIJ International. 2015;55:79–88.

  423. Takahashi, M., Hongu, A., & M. Honda (1994). Recent advances in electric arc furnaces for steelmaking. Nippon Steel Technical Report 61:58–64.

  424. Takamatsu N, et al. Development of iron-making technology. Nippon Steel Technical Report. 2012;101:79–88.

  425. Takamatsu N, et al. Steel recycling circuit in the world. Tetsu to hagane. 2014;100:740–749.

  426. Takeuchi H, et al. Production of stainless steel strip by twin-drum strip casting process. Nippon Steel Technical Report. 1994;61:46–51.

  427. Tang, R. (2010). China’s steel industry and its impact on the United States: Issues for congress. .

  428. Tanner AH. Continuous casting: A revolution in steel Fort Lauderdale: Write Stuff Enterprises; 1998.

  429. Tassava, C. (2008). The American Economy during World War II. EH.Net Encyclopedia, Whaples R. (Ed.) February 10, 2008. .

  430. Taylor FW. On the art of cutting metals New York, NY: ASME; 1907.

  431. Taylor FW. The principles of scientific management New York, NY: Harper and Brothers; 1911.

  432. Team Stainless. (2014). Stainless steel. .

  433. Temin P. Iron and steel in nineteenth century america Cambridge, MA: MIT Press; 1964.

  434. Tezuka, H. (2014). Voluntary actions in the Japanese steel industry. .

  435. Thakkar V, et al. Life cycle assessment of some indian steel industries with special reference to the climate change. Journal of Environmental Research and Development. 2008;2:773–782.

  436. Thomas J, ed. Energy analysis. Boulder, CO: Westview Press; 1979.

  437. Thomsen CJ. Ledetraad til nordisk oldkyndighed Copenhagen: L. Mellers; 1836.

  438. ThyssenKrupp. (2003). 30 Jahre Hochofen in Duisburg-Schwelgern—Vom schwarzen Riesen zum Hightech-Giganten. .

  439. ThyssenKrupp. (2008). Fifth furnace campaign can begin: Blast furnace 1 in Duisburg-Schwelgern to restart operation in April after modernization. .

  440. ThyssenKrupp. (2014). Größter Hochofen Europas angeblasen: “Schwelgern 2” erschmilzt wieder Roheisen. .

  441. ThyssenKrupp. (2015). ThyssenKrupp AG. .

  442. Toulouevski YN, Zinurov IZ. Innovation in electric arc furnaces Berlin: Springer; 2010.

  443. Tovarovskiy IG. Substitution of coke and energy savings in blast furnaces. Energy Science and Technology. 2013;6:4–13.

  444. Tunc M, Camdali U, Arasil G. Mass analysis of an electric furnace at a steel company in Turkey. Metallurgis. 2012;56:253–261.

  445. Turak T. William Le Baron Jenney: A pioneer of modern architecture Ann Arbor, MI: UMI Research Press; 1986.

  446. Tylecote RF, Austin JN, Wraith AE. The mechanism of the bloomery process in shaft furnaces. Journal of the Iron and Steel Institute. 1971;209:342–363.

  447. Uemori R, et al. Steels for energy production and transport. Nippon Steel Technical Report. 2012;101:68–78.

  448. Uemori R, et al. Steels for marine transportation and construction. Nippon Steel Technical Report. 2012a;101:37–47.

  449. Uhlig, A. (2011). Charcoal production in Brazil: Does it pass the sustainability bar? Paper presented at Charcoal Symposium, Arusha, Tanzania, June 15, 2011. .

  450. Uhlmann J, Heinrich P. The soul of fire: How charcoal changed the world Pompano Beach, FL: University Books; 1987.

  451. UNEP (United Nations Environment Programme). Recycling rates of metals: A status report Nairobi: UNEP; 2011; .

  452. USBC (US Bureau of the Census). Historical statistics of the United States: Colonial times to 1970 Washington, DC: US Department of Commerce; 1975.

  453. USDOE (US Department of Energy). (2013). Lightweight Materials: 2012 Annual Progress Report. .

  454.
USDOT (US Department of Transportation). (2015). Motor vehicles scrapped: Table 4-58. .

  455. USEIA. (2015). How much electricity does an American home use? .

  456. USEPA. (2007). Energy trends in selected manufacturing sectors: Opportunities and challenges for environmentally preferable outcomes. .

  457. USEPA. 2008 Sector performance report Washington, DC: USEPA; 2008; .

  458. USEPA. Available and emerging technologies for reducing greenhouse gas emissions from the iron and steel industry Research Triangle Park, NC: USEPA; 2012; .

  459. USEPA. (2014). Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2012. .

  460. USGS. (2012). Building safer structures. .

  461. USGS (US Geological Survey). (2014). Mineral commodity summaries 2014. .

  462. USNRC (US Nuclear Regulatory Council). (2014). Fact sheet on reactor pressure vessel issues. .

  463. USS (US Steel). (2015). Gary works. .

  464. Vadenbo CO, Boesch ME, Hellweg S. Life cycle assessment model for the use of alternative resources in Ironmaking. Journal of Industrial Ecology. 2013;17:363–374.

  465. Vale. (2015). Valemax. .

  466. Valia HS. Coke production for blast furnace ironmaking Washington, DC: AISI; 2014; .

  467. Van Noten F, Raymaekers J. Early iron smelting in Central Africa. Scientific American. 1988;258:104–111.

  468. VDEh. (2013). Blast furnaces worldwide. VDEh PLANTFACTS. .

  469. Verbraeck A, ed. The energy accounting of materials, products, processes and services. Rotterdam: TNO (Netherlands Institute for Applied Scientific Research); 1976.

  470. Verhoeven JD. Damascus steel Part I: Indian wootz steel. Metallography. 1987;20:145–151.

  471. Verhoeven JD. The mystery of Damascus blades. Scientific American. 2001;284(1):74–79.

  472. Verhoeven JD, Pendray AH, Dauksch WE. The key role of impurities in ancient Damascus steel blades. Journal of Metals 1998:58–62 September 1998.

  473. Voysey HW. Description of the native manufacture of steel in southern India. Journal of the Asiatic Society of Bengal 1832; 1L245-247.

  474. Wagner DB. Iron and steel in ancient China Leiden: E.J. Brill; 1993.

  475. Wagner DB. The traditional Chinese iron industry and its modern fate London: Routledge; 2013.

  476. Wakelin DH, Fruehan RJ, eds. Making, shaping and treating of steel (Iron Making). Pittsburgh, PA: The AISE Steel Foundation; 1999.

  477. Walker RD. Modern ironmaking methods Brookfield, VT: Gower Publishing; 1985.

  478. Walsh, S. (2011). Iron ore. Sydney: Rio Tinto Investor Seminar, November 28, 2011. .

  479. Wang C, et al. A model on CO2 emission reduction in integrated steelmaking by optimization methods. International Journal of Energy Research. 2008;32:1092–1106.

  480. Wang T, et al. Forging the anthropogenic iron cycle. Environmental Science & Technology. 2007;41:5120–5129.

  481. Warren K. Bethlehem steel: Builder and arsenal of America Pittsburgh, PA: University of Pittsburgh Press; 2008.

  482. Washlaski, R. A. (2008). Manufacture of coke at Salem No. 1 mine coke works. .

  483. Wayman ML. The early use of iron in Arctic North America. JOM. 1988;40:44–45.

  484. WAZ. (2013). Duisburgs “Schwarzer Riese”—Hochofen Schwelgern 1 produziert seit 40 Jahren .

  485. WCA (World Coal Association). (2014). Coal statistics. .

  486. WCA (World Coal Association), 2015. Coal Statistics. .

  487. Wengenroth U. Enterprise and technology: The German and British steel industries, 1865–1895 Cambridge: Cambridge University Press; 1994.

  488. White Star Line. (2008). Titanic and other White Star Line ships. .

  489. Wight JK, MacGregor JG. Reinforced concrete: Mechanics and design Englewood Cliffs, NJ: Prentice Hall; 2011.

  490. Williams A. A note on liquid iron in medieval Europe. Ambix. 2009;56:68–75.

  491. Williams M. Deforesting the earth: From prehistory to global crisis Chicago: Chicago University Press; 2006.

  492. Wirtschaftsvereinigung Stahl. (2013). Energiewende beginnt mit Stahl. .

  493. WISDRI. (2012). New high production indexes achieved in 5,800 m3 blast furnace of Shagang. .

  494. Wood, P. (2015). Sign of the times: Sparrows Point blast furnace demolished. The Baltimore Sun, January 28, 2015. .

  495. WorldAutoSteel. (2011). Future steel vehicle. .

  496. Worrell E, et al. World best practice energy intensity values for selected industrial sectors Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory; 2008; .

  497. Worrell E, et al. Energy efficiency improvement and cost saving opportunities for the U.S iron and steel industry an ENERGY STAR® guide for energy Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory; 2010.

  498. WSA. (1982). Steel statistical yearbook. .

  499. WSA. (1990). Steel statistical yearbook. .

  500. WSA. (2001). Steel statistical yearbook. .

  501. WSA. (2009). The three Rs of sustainable steel. .

  502. WSA. (2011a). Steel and raw materials. .

  503. WSA. (2011b). Steel food cans. .

  504. WSA. Life cycle assessment methodology report Brussels: WSA; 2011c; .

  505. WSA. Steel solutions in the green economy: Wind turbines Brussels: WSA; 2012a; .

  506. WSA. Sustainable steel: At the core of a green economy Brussels: WSA; 2012b; .

  507. WSA. (2014a). Steel statistical ye
arbook 2014. .

  508. WSA. (2014b). Steel industry by-products. .

  509. WSA. (2015). January 2015 crude steel production. .

  510. WSC (World Shipping Council). (2015). Containers. .

  511. Wu Y, Ling HC. Economic development and the use of energy resources in communist China New York, NY: Praeger; 1963.

  512. Yamaguchi J, Nakashima T, Sawai T. Change and development of continuous casting technology. Nippon Steel Technical Report. 2013;104:13–20.

  513. Yamazaki, Y. (2012). Gasification reactions of metallurgical coke and its application—Improvement of carbon use efficiency in blast furnace. .

  514. Yasuba Y. Did Japan ever suffer from a shortage of natural resources before World War II? The Journal of Economic History. 1996;56:543–560.

  515. Yellishetty M, Mudd GM. Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India. Journal of Cleaner Production. 2014;84:400–410.

  516. Yetisken Y, Camdali U, Ekmekci I. Cost and energy analysis for optimization of charging materials for steelmaking in EAF and LF as a system. Metallurgist. 2013;57:378–388.

  517. Yin X, Chen W. Trends and development of steel demand in China: A bottom-up analysis. Resources Policy. 2013;38:407–415.

  518. Yonekura S. The Japanese iron and steel industry, 1850–1990: Continuity and discontinuity New York, NY: St. Martin’s Press; 1994.

  519. Zambas K. Structural repairs to the monuments of the Acropolis—The Parthenon. Civil Engineering. 1992;92:166–176.

  520. Zangato E, Holl AFC. On the iron front: New evidence from North-central Africa. Journal of African Archaeology. 2010;8:7–23.

 

‹ Prev