by Vaclav Smil
399. Smil V, Nachman P, Long TV. Energy analysis and agriculture: An application to U.S corn production Boulder, CO: Westview Press; 1983.
400. Smithson DJ, Sheridan AT. Energy use in mill areas. Ironmaking and Steelmaking. 1975;4:286–294.
401. Sohn I, Fruehan RJ. The reduction of iron oxides by volatiles in a rotary hearth furnace process. Metallurgical and Materials Transactions B. 2006;37:223–229.
402. SRI. (2015). Steel is North America’s #1 recycled material.
403. SRI (Steel Recycling Institute). (2014). 2013 steel recycling rates.
404. Stahlinstitut der VDEh. (2013). Beitrag der Stahlindustrie zu Nachhaltigkeit, Ressourcen- und Energieeffizienz.
405. Stahlinstitut VDEh. (2014). Fakten zur Stahlindustrie in Deutschland.
406. Starratt FW. LD … in the beginning. Journal of Metals. 1960;12:528–530.
407. Steel Benchmarker. (2015). Price history: Tables and charts.
408. Steel Framing Alliance. (2007). A builder’s guide to steel frame construction.
409. Steel Times International. (2013). HIsmelt plant goes to China.
410. Steiger, R. W. (1999). Edison’s concrete dream.
411. Straker E. Wealden iron New York, NY: Augustus M. Kelley; 1969.
412. Stubbles J. Energy use in the U.S steel industry: An historical perspective and future opportunities Columbia, MD: Energetics; 2000.
413. Stubbles J. EAF steelmaking—past, present and future. Direct from MIDREX. 2000;3:3–4.
414. Stubbles, J. (2015). The Basic Oxygen Steelmaking (BOS) Process.
415. Sugawara T, et al. Construction and operation of No 5 blast furnace, Fukuyama Works, Nippon Kokan KK. Ironmaking and Steelmaking. 1986;3:241–251.
416. Sullivan, D.E. (2005). Metal stocks in use in the United States.
417. Sundholm JL, et al. Manufacture of metallurgical coke and recovery of coal chemicals. In: Wakelin DA, ed. The making, shaping and treating of steel, ironmaking volume. Pittsburgh, PA: The AISE Foundation; 1999:381–545.
418. Suopajärvi H, Fabritius T. Towards more sustainable ironmaking—An analysis of energy wood availability in Finland and the economics of charcoal production. Sustainability. 2013:1188–1207.
419. Svensson E, et al. The crofter and the iron works: The material culture of structural crisis, identity and making a living on the edge. International Journal of Historical Archaeology. 2009;13:183–205.
420. Szekely J. Can advanced technology save the U.S steel industry? Scientific American. 1987;257(1):34–41.
421. Takahashi M, et al. Steels and their applications for life satisfaction and transportation. Nippon Steel Technical Report. 2012;101:27–36.
422. Takahashi M. Sheet steel technology for the last 100 years: Progress in sheet steels in hand with the automotive industry. ISIJ International. 2015;55:79–88.
423. Takahashi, M., Hongu, A., & M. Honda (1994). Recent advances in electric arc furnaces for steelmaking. Nippon Steel Technical Report 61:58–64.
424. Takamatsu N, et al. Development of iron-making technology. Nippon Steel Technical Report. 2012;101:79–88.
425. Takamatsu N, et al. Steel recycling circuit in the world. Tetsu to hagane. 2014;100:740–749.
426. Takeuchi H, et al. Production of stainless steel strip by twin-drum strip casting process. Nippon Steel Technical Report. 1994;61:46–51.
427. Tang, R. (2010). China’s steel industry and its impact on the United States: Issues for congress.
428. Tanner AH. Continuous casting: A revolution in steel Fort Lauderdale: Write Stuff Enterprises; 1998.
429. Tassava, C. (2008). The American Economy during World War II. EH.Net Encyclopedia, Whaples R. (Ed.) February 10, 2008.
430. Taylor FW. On the art of cutting metals New York, NY: ASME; 1907.
431. Taylor FW. The principles of scientific management New York, NY: Harper and Brothers; 1911.
432. Team Stainless. (2014). Stainless steel.
433. Temin P. Iron and steel in nineteenth century america Cambridge, MA: MIT Press; 1964.
434. Tezuka, H. (2014). Voluntary actions in the Japanese steel industry.
435. Thakkar V, et al. Life cycle assessment of some indian steel industries with special reference to the climate change. Journal of Environmental Research and Development. 2008;2:773–782.
436. Thomas J, ed. Energy analysis. Boulder, CO: Westview Press; 1979.
437. Thomsen CJ. Ledetraad til nordisk oldkyndighed Copenhagen: L. Mellers; 1836.
438. ThyssenKrupp. (2003). 30 Jahre Hochofen in Duisburg-Schwelgern—Vom schwarzen Riesen zum Hightech-Giganten.
439. ThyssenKrupp. (2008). Fifth furnace campaign can begin: Blast furnace 1 in Duisburg-Schwelgern to restart operation in April after modernization.
440. ThyssenKrupp. (2014). Größter Hochofen Europas angeblasen: “Schwelgern 2” erschmilzt wieder Roheisen.
441. ThyssenKrupp. (2015). ThyssenKrupp AG.
442. Toulouevski YN, Zinurov IZ. Innovation in electric arc furnaces Berlin: Springer; 2010.
443. Tovarovskiy IG. Substitution of coke and energy savings in blast furnaces. Energy Science and Technology. 2013;6:4–13.
444. Tunc M, Camdali U, Arasil G. Mass analysis of an electric furnace at a steel company in Turkey. Metallurgis. 2012;56:253–261.
445. Turak T. William Le Baron Jenney: A pioneer of modern architecture Ann Arbor, MI: UMI Research Press; 1986.
446. Tylecote RF, Austin JN, Wraith AE. The mechanism of the bloomery process in shaft furnaces. Journal of the Iron and Steel Institute. 1971;209:342–363.
447. Uemori R, et al. Steels for energy production and transport. Nippon Steel Technical Report. 2012;101:68–78.
448. Uemori R, et al. Steels for marine transportation and construction. Nippon Steel Technical Report. 2012a;101:37–47.
449. Uhlig, A. (2011). Charcoal production in Brazil: Does it pass the sustainability bar? Paper presented at Charcoal Symposium, Arusha, Tanzania, June 15, 2011.
450. Uhlmann J, Heinrich P. The soul of fire: How charcoal changed the world Pompano Beach, FL: University Books; 1987.
451. UNEP (United Nations Environment Programme). Recycling rates of metals: A status report Nairobi: UNEP; 2011;
452. USBC (US Bureau of the Census). Historical statistics of the United States: Colonial times to 1970 Washington, DC: US Department of Commerce; 1975.
453. USDOE (US Department of Energy). (2013). Lightweight Materials: 2012 Annual Progress Report.
454.
USDOT (US Department of Transportation). (2015). Motor vehicles scrapped: Table 4-58.
455. USEIA. (2015). How much electricity does an American home use?
456. USEPA. (2007). Energy trends in selected manufacturing sectors: Opportunities and challenges for environmentally preferable outcomes.
457. USEPA. 2008 Sector performance report Washington, DC: USEPA; 2008;
458. USEPA. Available and emerging technologies for reducing greenhouse gas emissions from the iron and steel industry Research Triangle Park, NC: USEPA; 2012;
459. USEPA. (2014). Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2012.
460. USGS. (2012). Building safer structures.
461. USGS (US Geological Survey). (2014). Mineral commodity summaries 2014.
462. USNRC (US Nuclear Regulatory Council). (2014). Fact sheet on reactor pressure vessel issues.
463. USS (US Steel). (2015). Gary works.
464. Vadenbo CO, Boesch ME, Hellweg S. Life cycle assessment model for the use of alternative resources in Ironmaking. Journal of Industrial Ecology. 2013;17:363–374.
465. Vale. (2015). Valemax.
466. Valia HS. Coke production for blast furnace ironmaking Washington, DC: AISI; 2014;
467. Van Noten F, Raymaekers J. Early iron smelting in Central Africa. Scientific American. 1988;258:104–111.
468. VDEh. (2013). Blast furnaces worldwide. VDEh PLANTFACTS.
469. Verbraeck A, ed. The energy accounting of materials, products, processes and services. Rotterdam: TNO (Netherlands Institute for Applied Scientific Research); 1976.
470. Verhoeven JD. Damascus steel Part I: Indian wootz steel. Metallography. 1987;20:145–151.
471. Verhoeven JD. The mystery of Damascus blades. Scientific American. 2001;284(1):74–79.
472. Verhoeven JD, Pendray AH, Dauksch WE. The key role of impurities in ancient Damascus steel blades. Journal of Metals 1998:58–62 September 1998.
473. Voysey HW. Description of the native manufacture of steel in southern India. Journal of the Asiatic Society of Bengal 1832; 1L245-247.
474. Wagner DB. Iron and steel in ancient China Leiden: E.J. Brill; 1993.
475. Wagner DB. The traditional Chinese iron industry and its modern fate London: Routledge; 2013.
476. Wakelin DH, Fruehan RJ, eds. Making, shaping and treating of steel (Iron Making). Pittsburgh, PA: The AISE Steel Foundation; 1999.
477. Walker RD. Modern ironmaking methods Brookfield, VT: Gower Publishing; 1985.
478. Walsh, S. (2011). Iron ore. Sydney: Rio Tinto Investor Seminar, November 28, 2011.
479. Wang C, et al. A model on CO2 emission reduction in integrated steelmaking by optimization methods. International Journal of Energy Research. 2008;32:1092–1106.
480. Wang T, et al. Forging the anthropogenic iron cycle. Environmental Science & Technology. 2007;41:5120–5129.
481. Warren K. Bethlehem steel: Builder and arsenal of America Pittsburgh, PA: University of Pittsburgh Press; 2008.
482. Washlaski, R. A. (2008). Manufacture of coke at Salem No. 1 mine coke works.
483. Wayman ML. The early use of iron in Arctic North America. JOM. 1988;40:44–45.
484. WAZ. (2013). Duisburgs “Schwarzer Riese”—Hochofen Schwelgern 1 produziert seit 40 Jahren
485. WCA (World Coal Association). (2014). Coal statistics.
486. WCA (World Coal Association), 2015. Coal Statistics.
487. Wengenroth U. Enterprise and technology: The German and British steel industries, 1865–1895 Cambridge: Cambridge University Press; 1994.
488. White Star Line. (2008). Titanic and other White Star Line ships.
489. Wight JK, MacGregor JG. Reinforced concrete: Mechanics and design Englewood Cliffs, NJ: Prentice Hall; 2011.
490. Williams A. A note on liquid iron in medieval Europe. Ambix. 2009;56:68–75.
491. Williams M. Deforesting the earth: From prehistory to global crisis Chicago: Chicago University Press; 2006.
492. Wirtschaftsvereinigung Stahl. (2013). Energiewende beginnt mit Stahl.
493. WISDRI. (2012). New high production indexes achieved in 5,800 m3 blast furnace of Shagang.
494. Wood, P. (2015). Sign of the times: Sparrows Point blast furnace demolished. The Baltimore Sun, January 28, 2015.
495. WorldAutoSteel. (2011). Future steel vehicle.
496. Worrell E, et al. World best practice energy intensity values for selected industrial sectors Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory; 2008;
497. Worrell E, et al. Energy efficiency improvement and cost saving opportunities for the U.S iron and steel industry an ENERGY STAR® guide for energy Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory; 2010.
498. WSA. (1982). Steel statistical yearbook.
499. WSA. (1990). Steel statistical yearbook.
500. WSA. (2001). Steel statistical yearbook.
501. WSA. (2009). The three Rs of sustainable steel.
502. WSA. (2011a). Steel and raw materials.
503. WSA. (2011b). Steel food cans.
504. WSA. Life cycle assessment methodology report Brussels: WSA; 2011c;
505. WSA. Steel solutions in the green economy: Wind turbines Brussels: WSA; 2012a;
506. WSA. Sustainable steel: At the core of a green economy Brussels: WSA; 2012b;
507. WSA. (2014a). Steel statistical ye
arbook 2014.
508. WSA. (2014b). Steel industry by-products.
509. WSA. (2015). January 2015 crude steel production.
510. WSC (World Shipping Council). (2015). Containers.
511. Wu Y, Ling HC. Economic development and the use of energy resources in communist China New York, NY: Praeger; 1963.
512. Yamaguchi J, Nakashima T, Sawai T. Change and development of continuous casting technology. Nippon Steel Technical Report. 2013;104:13–20.
513. Yamazaki, Y. (2012). Gasification reactions of metallurgical coke and its application—Improvement of carbon use efficiency in blast furnace.
514. Yasuba Y. Did Japan ever suffer from a shortage of natural resources before World War II? The Journal of Economic History. 1996;56:543–560.
515. Yellishetty M, Mudd GM. Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India. Journal of Cleaner Production. 2014;84:400–410.
516. Yetisken Y, Camdali U, Ekmekci I. Cost and energy analysis for optimization of charging materials for steelmaking in EAF and LF as a system. Metallurgist. 2013;57:378–388.
517. Yin X, Chen W. Trends and development of steel demand in China: A bottom-up analysis. Resources Policy. 2013;38:407–415.
518. Yonekura S. The Japanese iron and steel industry, 1850–1990: Continuity and discontinuity New York, NY: St. Martin’s Press; 1994.
519. Zambas K. Structural repairs to the monuments of the Acropolis—The Parthenon. Civil Engineering. 1992;92:166–176.
520. Zangato E, Holl AFC. On the iron front: New evidence from North-central Africa. Journal of African Archaeology. 2010;8:7–23.