Still the Iron Age

Home > Other > Still the Iron Age > Page 33
Still the Iron Age Page 33

by Vaclav Smil

.

  274. McKinsey. (2013b). Scarcity and saturation. .

  275. McKinsey. (2013c). Overcapacities in the steel industry. .

  276. McKinsey. (2014). Global steel industry perspective—Synthesis version. .

  277. McKinsey Global Institute. (2013). Infrastrucure 2013: Global priorities, global insights. .

  278. McManus GJ. Inland’s No 7 start-up more than pushing the right buttons. Iron Age. 1981;224 MP-7-MP-16.

  279. McManus GJ. Blast furnaces: More heat from the hot end. Iron Age. 1988a;4(8):15–20.

  280. McManus GJ. Ironmaking: The next step. Iron Age. 1988b;4(8):29–31.

  281. McManus GJ. Coal gets a new shot. Iron Age. 1989;5(1):31–34.

  282. Metal Suppliers. (2015). Alloy steels 300M. .

  283. MIDREX. The economics of longevity. Direct from MIDREX First Quarter. 2012:10–13.

  284. MIDREX. (2014a). MIDREX. .

  285. MIDREX. (2014b). 2013 World direct reduction statistics. .

  286. MIDREX. (2015). The MIDREX process. .

  287. Millbank P. Stainless steel faces subdued global growth. Insight 2013:28–31 May 2013.

  288. Miller TW, et al. Oxygen steelmaking processes. In: Wakelin DA, ed. The making, shaping and treating of steel, ironmaking volume. Pittsburgh, PA: The AISE Foundation; 1998:475–524.

  289. Miller JR. The direct reduction of iron ore. Scientific American. 1976;235(1):68–80.

  290. Minenko N, et al. Ural iron before the industrial revolution. In: Rydén G, Ågren M, eds. Ironmaking in Sweden and Russia: A survey of the social organization of iron production before 1900. Uppsala: Historiska institutionen; 1993:43–95.

  291. Mining-technology.com. (2014). Ferro giants—The world’s biggest iron ore producers. .

  292. Misa TJ. A nation of steel: The making of modern America 1865–1925 Baltimore, MD: The Johns Hopkins University Press; 1995.

  293. MMT (Maersk Maritime Technology). (2015). Triple E-vessels. .

  294. Monteiro MA. Em busca do carvão vegetal barato: o deslocamento de siderúrgicas para a Amazônia. Novos cadernos NAEA. 2006;9(2):55–97.

  295. Morita Z, Emi T, eds. An introduction to iron and steel processing. Tokyo: Kawasaki Steel 21st Century Foundation; 2003; .

  296. Morris AE, Geiger G, Fine HA. Handbook on material and energy balance calculations in materials processing Hoboken, NJ: Wiley; 2011.

  297. Mourão, J. M. (2011). NT Minério de Ferro e Pelotas Situação Atual e Tendências 2025. .

  298. Moynihan MC, Allwood JM. The flow of steel into the construction sector. Resources, Conservation and Recycling. 2012;68:88–95.

  299. Mushet, D. (1804). Experiments on wootz or Indian steel. Philosophical Transactions of the Royal Society Series A, 95:175.

  300. Mussatti DC. Coke ovens: Industry profile Research Triangle Park, NC: USEPA; 1998.

  301. Müller DB, et al. Exploring the engine of anthropogenic iron cycles. Proceedings of the National Academy of Sciences. 2006;103:16111–16116.

  302. Naito M, Takeda K, Matsui Y. Ironmaking technology for the last 100 years. ISIJ International. 2015;55(1):7–35.

  303. Nasaw D. Andrew Carnegie New York, NY: Penguin Books; 2006.

  304. NBS. China statistical yearbook Beijing: NBS; 2013.

  305. NBS (National Bureau of Statisics). China statistical yearbook Beijing: NBS; 2000.

  306. Needham J. The development of iron and steel in China London: The Newcomen Society; 1964.

  307. Newby F, ed. Early reinforced concrete. Burlington, VT: Ashgate Publishing; 2001.

  308. Nogami H, et al. Analysis on material and energy balances of ironmaking systems on blast furnace operations with metallic charging, top gas recycling and natural gas injection. ISIJ International. 2006;46:1759–1766.

  309. Nomura S, Callcott TG. Maximum rates of pulverized coal injection in ironmaking blast furnaces. ISIJ International. 2011;51:1033–1043.

  310. Norgate T, Landberg D. Environmental and economic aspects of charcoal use in steelmaking. ISIJ International. 2009;49:587–595.

  311. NSA (National Slag Association). (2015). Blast furnace slag. .

  312. NSSE (Nippon Steel & Sumikin Engineering). (2013). The track record for 50 years. .

  313. Nucor. (2014). Nucor today. .

  314. Nyboer J, Bennett M. Energy use and related data: Canadian iron and steel and ferroalloy manufacturing industries 1990 to 2012 Burnaby, BC: Canadian Industrial Energy End‐use Data and Analysis Centre; 2014.

  315. Oda J, et al. International comparisons of energy efficiency in power, steel, and cement industries. Energy Policy. 2012;44:118–129.

  316. OECD. An initial view on methodologies for emissions baselines: Iron and steel case study Paris: OECD; 2001.

  317. O’Hara, M. (2014). An insight into U.S. Steel’s transformation. .

  318. Ogaki, Y., et al. (2001). Recycling of waste plastic packaging in a blast furnace system. .

  319. Ogawa S, et al. Progress and prospect of rolling technology. Nippon Steel Technical Report. 2012;101:95–104 .

  320. Ogawa T, Sellan R, Ruscio E. Jumbo size 420t twin DC FastArc® EAF at Tokyo Steel. Millennium Steel. 2011:52–58.

  321. Ogura, S. et al. (2014). Environmental conservation and energy saving activities in JFE Steel. JFE Technical Report No. 19 March 2014. .

  322. Ohashi N. Modern steelmaking. American Scientist. 1992;80:540–555.

  323. Okumura H. Recent trends and future prospects of continuous casting technology. Nippon Steel Technical Report. 1994;61:9–14.

  324. Okuno Y. Prospects of iron and steel production and progress of blast furnace route in China. Nippon Steel Technical Reports. 2006;94:16–22 .

  325. Olsson F. Järnhanteringens dynamic: Produktion, lokalisering och agglomerationer i Bergslagen och Mellansverige 1368–1910 Umeå: Umeå Studies in Economic History; 2007.

  326. Osborn F. The story of the mushets London: Thomas Nelson & Sons; 1952.

  327. Osborne D, ed. The coal handbook: Towards cleaner production. Cambridge: Woodhead Publishing; 2013.

  328. Outotec. (2015a). Outotec© sintering technologies. .

  329. Outotec. (2015b). Outotec© pelletizing technologies. .

  330. Pacey A. Technology in world civilization Cambridge, MA: MIT Press; 1992.

  331. Palgrave Macmillan. (Eds.), (2013). International Historical Statistics. .

  332. Palmer T. Climate forecasting: Build high-resolution global climate models. Nature. 2014;515:338–339.

  333. Pardo N, Moya JA, Vatopoulos K. Perspective scenarios on energy efficiency and CO2 emissions in the EU iron & steel industry Brussels: European Commission; 2012; s://ec.europa.eu/jrc/sites/default/files/ldna25543enn.pdf>.

  334. Park J, Rehren T. Large-scale 2nd and 3rd century AD bloomery iron smelting in Korea. Journal of Archaeological Science. 2011;38:1180–1190.

  335. Paskoff PF, ed. Iron and steel in the nineteenth century. New York, NY: Facts on File; 1989.

  336. Pauliuk S, et al. The steel scrap age. Environmental Science & Technology. 2013;47:3348–3354.

  337. Pauliuk S, Wang T, Müller DB. Steel all over the world: Estimating in-use stocks of iron for 200 countries. Resources, Conservation and Recycling. 2013;71:22–30.

  338. Paynter S. Regional variations in bloomer smelting slag of the Iron Age and Romano-British periods. Archaeometry. 2006;48:271–292.

  339. PE International. Comparative life cycle assessment of aluminum and steel truck wheels Boston, MA: PE International; 2012; .

  340. Peacey JG, Davenport WG. The iron blast furnace Oxford: Pergamon Press; 1979.

  341. Peláez-Samaniegoa MR. Improvements of Brazilian carbonization industry as part of the creation of a global biomass economy. Renewable and Sustainable Energy Reviews. 2008;12:1063–1086.

  342. Pereira BLC, et al. Quality of wood and charcoal from Eucalyptus clones for ironmaster use. International Journal of Forestry Research 2012; http://dx.doi.org/10.1155/2012/523025.

  343. Perttula J. Wootz Damascus steel of ancient orient. Scandinavian Journal of Metallurgy. 2004;33:92–97.

  344. Pfeifer, H., & Kirschen M. (2002). Thermodynamic analysis of EAF energy and comparison with a statistical model of electric energy demand. .

  345. Pfeifer, H. C., Sousa, L. G. & Silva T. T. (2012). Design of the charcoal blast furnace – Differences to the Coke BF. Paper presented at the 6th International Congress of the Science and Technology in Iron Making, Rio de Janeiro, October 14-18, 2012. .

  346. Polinares. Fact sheet: Iron ore Brussels: European Commission; 2012.

  347. Polmar N, Allen TB. World War II: The encyclopedia of the war years, 1941–1945 New York, NY: Dover; 2012.

  348. Porter HC. Coal carbonization New York, NY: The Chemical Catalog Company; 1924.

  349. POSCO. (2013). POSCO renovates world’s biggest furnace at Gwangyang Steelworks. POSCO Official Blog June 13, 2013. .

  350. Poveromo JJ. Agglomeration processes—pelletizing and sintering. Industrial minerals & rocks—Commodities, markets and uses Littleton: Society for Mining, Metallurgy and Exploration; 2006; (pp. 1391–1404).

  351. Prime Research. (2014). World Car Trends 2014 “Smart Efficiency and Digital Intelligence”. .

  352. Protásio T, et al. Qualidade e avaliação energética do carvão vegetal dos resíduos do coco babaçu para uso siderúrgico. Ciência e Agrotecnologia. 2014;38:435–444.

  353. Ransom PJG. The Victorian railway and how it evolved London: William Heinemann; 1989.

  354. Recycling International. (2014). Plunge in US steel scrap exports to Turkey and China. .

  355. Rehren T, et al. 5,000 years old Egyptian iron beads made from hammered meteoritic iron. Journal of Archaeological Science. 2013;40:4785–4792.

  356. Remus, R., et al. (2013). Best available techniques (BAT) reference document for iron and steel production. .

  357. Riedel G. Der siemens-martin-ofen: Rückblick auf eine stahlepoche Düsseldorf: Stahleisen Verlag; 1994.

  358. Rio Tinto. (2014). HIsmelt. .

  359. Rousmaniere P, Raj N. Shipbreaking in the developing world: Problems and prospects. International Journal of Occupational and Environmental Health. 2007;13:359–368.

  360. Rousset P, et al. Pressure effect on the quality of eucalyptus wood charcoal for the steel industry: A statistical analysis approach. Fuel Processing Technology. 2011;92:1890–1897.

  361. Ryan MP, et al. Why stainless steel corrodes. Nature. 2002;415:770–774.

  362. Rydén G, Ågren M, eds. Ironmaking in Sweden and Russia: A survey of the social organization of iron production before 1900. Uppsala: Historiska institutionen; 1993.

  363. Ryman, C., et al. (2004). Modelling of the blast furnace process with a view to optimize the steel plant energy system. In: Proceedings: 2nd International Conference & Exhibition on New Developments in Metallurgical Process Technology, Riva del Garda, Italy, September 19–21, 2004. Milano: Associazione Italiana di Metallurgia.

  364. Salzgitter Mannesmannröhren-Werke. (2015). Stahlrohre von Mannesmann—Innovation und Tradition. .

  365. Samajdar C. Reduction in specific energy consumption in steel industry—with special reference to Indian steel industry. Energy and Environmental Engineering Journal. 2012;1:104–107.

  366. Sampaio, R. S. (2005). Large-scale charcoal production to reduce CO2 emissions and improve quality in the coal based ironmaking industry. Paper presented the Workshop and Business Forum on Sustainable Biomass Production for the World Market, Campinas, 30.11-3.12 2005. .

  367. Sasada T, Chunag A. Irom smelting in the nomadic empire of Xiongnu in ancient Mongolia. ISIJ International. 2014;54:1017–1023.

  368. Schmidt, C. M., & Döhrn R. Stahl als unverzichtbarer Eckpfeiler der deutschen Industrie. .

  369. Schmidt P, Avery DH. Complex iron smelting and prehistoric culture in Tanzania. Science. 1978;201:1085–1089.

  370. Schmidt PR, Childs ST. Ancient African iron production. American Scientist. 1995;83:524–533.

  371. Schmöle, P., Lüngen, H. B., & Noldin J. H. (2014). Trends in iron-making given the new reality of iron ore and coal resources. .

  372. Schnatterly, J. (2008). Watching our weight: Steel content of North American auto. .

  373. Schneider W. Continuous casting New York, NY: John Wiley; 2000.

  374. Schrewe HF. Continuous casting of steel: fundamental principles and practice Düsseldorf: Stahl und Eisen; 1991.

  375. Schumpeter JA. Capitalism, socialism, and democracy New York, NY: Harper; 1942.

  376. Scientific American. The electric production of steel. Scientific American 1913:88–89 August 2, 1913.

  377. Scott DA. Copper and bronze in art: Corrosion, colorants, conservation Los Angeles: Getty Conservation Institute; 2002.

  378. SCS Global Services. Environmental life cycle assessment of southern yellow pine wood and North American galvanized steel utility distribution poles Emeryville, CA: SCS Global Services; 2013; .

  379. Seitz F. Gustave Eiffel Le triomphe de l’ingénieur Paris: Armand Colin; 2014.

  380. Sexton AH. Fuel and refractory materials London: Vlackie and Son; 1897.

  381. Shaeffer RE. Reinforced concrete: Preliminary design for architects and builders New York, NY: McGraw-Hill; 1992.

  382. Shepard RR. Steel’s workhorse: The basic oxygen furnace. Inspection Trends. 2004;7(1):21–23 04/01/it0104-21.pdf>.

  383. Shinotake A, et al. Blast furnace campaign life relating to the productivity. La Revue de Métallurgie. 2004:203–209.

  384. Ship Cruise. (2015). Cruise ship cost to build. .

  385. SIA. (2014). Semiconductor industry posts record sales in 2013. .

  386. Siemens VAI. (2006). SIMETALCIS BF—Solutions for blast furnaces. .

  387. Siemens VAI. (2008). SIMETALCIS hot blast stoves. .

  388. Siemens VAI. (2011). SOMETAL corex technology. .

  389. Siemens VAI. (2012). High productive steelmaking with SIMETAL EAF ultimate. .

  390. SkyscraperPage.com (2015). World’s tallest buildings 2015. .

  391. Smil V. Energy in world history Boulder, CO: Westview Press; 1994.

  392. Smil V. China’s great famine: 40 years later. British Medical Journal. 2000;7225:1619–1621.

  393. Smil V. China’s past, China’s future London: RoutledgeCurzon; 2004.

  394. Smil V. Creating the twentieth century: Technical innovations of 1867–1914 and their lasting impact New York, NY: Oxford University Press; 2005.

  395. Smil V. Transforming the 20th century: Technical innovations and their consequences New York, NY: Oxford University Press; 2006.

  396. Smil V. Prime movers of globalization Cambridge, MA: MIT Press; 2010.

  397. Smil V. Making the modern world Chichester: John Wiley; 2013.

  398. Smil V. Power density Cambridge, MA: MIT Press; 2015.

 

‹ Prev