Serving the Reich
Page 10
The exclusion of Stark was a pyrrhic victory for those who wished to prevent the Nazification of the Prussian Academy. The National Socialists encouraged academicians to apply for party membership by offering the bait of preferential consideration for the best Civil Service jobs. From 1934 the academy signed off its correspondence with ‘Heil Hitler!’, as most civil servants were required to do. Servile gestures of loyalty, such as communal listening to Hitler’s radio broadcasts, were demanded and observed. Planck unsuccessfully contested the election of party members in 1937, most notably the mathematician Theodor Vahlen, whose journal Deutsche Mathematik aimed to establish his subject as an ‘Aryan’ discipline purged of Jewish influence. After that, any semblance of autonomy vanished. In 1938 Rust removed the last vestiges of democratic process, replacing the academy’s committee with governance by the Führer principle and giving his ministry the power to appoint or dismiss members as it saw fit. When Rust made Vahlen president in 1939 (with Vahlen’s fellow Deutsche Mathematiker Ludwig Bieberach as secretary), the game was over: the academy ceased to function as a serious scientific body and became an organ of the Nazi state. Planck’s accommodations had been for nothing—indeed, eventually he gave up his opposition to the changes and announced that the academy should put their trust in Vahlen. At no stage did Planck appear to consider resigning his membership.*5
The ejection of Einstein from the Prussian Academy of Sciences shows Planck at his most compromised. In some ways his actions look all the worse for the fact that Planck was not one of the ultra-nationalist anti-Semites calling for Einstein’s exclusion: at some level he surely knew the injustice of it all. But his position is more tragic than despicable: he could not imagine what else to do. According to the Austrian physicist and philosopher Philipp Frank, who emigrated from Prague to the United States in 1938,
Max Planck was one of the German professors who repeatedly asserted that the new rulers were pursuing a great and noble aim. We scientists who do not understand politics, ought not to make any difficulties for them. It is our task to see to it that as far as possible individual scientists suffer as few hardships as possible, and above all we should do everything in our power to maintain the high level of science in Germany. At least envious foreigners should not notice that a lowering of the level is taking place anywhere in our country.
This equivocation in a fundamentally decent and honest but inflexible man is evoked pathetically in a description by Paul Ewald of Planck’s predicament the following year, symbolizing what must have been for him a permanent inner struggle:
I think it was on the occasion of the opening of the Kaiser Wilhelm Institute of Metals in Stuttgart, and Planck as president of the KWG came to the opening. And he had to give the talk, and this must have been in 1934, and we were all staring at Planck, waiting to see what he would do at the opening, because at that time it was prescribed officially that you had to open such addresses with ‘Heil Hitler’. Well, Planck stood on the rostrum and lifted his hand half high, and let it sink again. He did it a second time. Then finally the hand came up, and he said ‘Heil Hitler.’ . . . Looking back, it was the only thing you could do if you didn’t want to jeopardize the whole KWG.
Everyone in German science was ‘staring at Planck, waiting to see what he would do’. And what he did was apparently to endorse the feeblest of responses, based on considerations of what was allegedly ‘good for Germany’ in the long term. He had no plan, no moral compass beyond an innate goodness of heart, no precedent or historical model—nothing to guide him through the catastrophe that had engulfed him, and which in the end destroyed him.
6
‘There is very likely a Nordic science’
Anti-Semitism did not just deprive German physics of some of its most valuable researchers. It also threatened to prescribe what kind of physics one could and could not do. For Nazi ideology was not merely a question of who should be allowed to live and work freely in the German state—like a virus, it worked its way into the very fabric of intellectual life. Shortly after the boycott of Jewish businesses at the start of April 1933, the Nazified German Students Association declared that literature should be cleansed of the ‘un-German spirit’, resulting on 10 May in the ritualistic burning of tens of thousands of books marred by Jewish intellectualism. These included works by Sigmund Freud, Bertolt Brecht, Karl Marx, Stefan Zweig and Walter Benjamin: books full of corrupt, unthinkable ideas. Into some of these pyres, baying students threw the books of Albert Einstein.
It was one thing to say that art was decadent—that its elitist abstraction or lurid imagery would lead people astray. And the ‘depraved’ sexuality saturating the pages of Freud’s works was self-evidently contaminating. But how could a scientific theory be objectionable? How could one even develop a pseudo-moralistic position on a notion that was objectively right or wrong? Besides, hadn’t Einstein’s relativity been proven? What did it even mean to say that science could be subverted by the ‘Jewish spirit’?
It would be absurd, of course, to suppose that most of the book-burners had given these questions a moment’s thought. The simple fact was that Einstein was a prominent Jew, and his thoughts therefore fit for the bonfire. But Einstein’s theory was attacked on racial grounds. This assault came not by asinine ideologues in the party whose knowledge of science extended no further than a belief in fairy tales about ‘cosmic ice’, nor from individuals on the scientific fringe seeking official approval and support. It was orchestrated by two Nobel laureates in physics, who devised a full-blown thesis (it can’t be dignified by calling it a theory) on how stereotypical racial features are exhibited in scientific thinking. They were Philipp Lenard and Johannes Stark, and they wanted to become the new Führers of German physics.
The story is ugly, sad, at times comic. It illustrates the complicated interactions between science and politics in Nazi Germany, for although one might expect the ‘Aryan physics’ (Deutsche Physik) of Stark and Lenard to have been welcomed by the National Socialists, its reception in official circles was decidedly mixed, and in the end it was ignored. The case of Deutsche Physik reveals how much of what went on in the Nazi state depended on how you played your cards rather than on what sort of hand you held. It shows how the German scientists’ pretensions of being ‘apolitical’ did not prevent politics from infecting scientific ideas themselves, and almost overwhelming them. Perhaps most importantly, the story explodes the comforting myth that science offers insulation against profound irrationality and extremism.
Against relativity
Lenard’s anti-Semitism festered for years before the Nazi era, and as was the case with many other haters of Jews his antipathy was fuelled by a sense of exclusion and injustice. The fact is that Lenard was a rather unremarkable man: an excellent experimental scientist in his heyday, but of limited intellectual depth, and emotionally and imaginatively stunted. When circumstances contrived to carry him further than his talents should have permitted, he was forced to attribute his shortcomings to the deceptions and foolishness of others. This combination of prestige and deluded self-image is invariably poisonous. There is no better example than Lenard to show that a Nobel Prize is no guarantee of wisdom, humanity or greatness of any sort, and that, strange as it may seem, the award can occasionally provoke feelings of inadequacy.
Lenard was given the prize in 1905 for his studies of cathode rays, the ‘radiation’ emitted from hot metals. They were manifested as a glow that emerged from a negatively charged metal plate (cathode) inside a sealed, evacuated ‘cathode-ray tube’ and made its way to a positively charged plate. Directed on to the glass walls of the tube—or as researchers discovered, on to sheets of particular minerals—the cathode rays stimulated bright fluorescence. Like his mentor Heinrich Hertz at the University of Bonn, Lenard at first believed these rays to be fluctuations in the ether—like light, as it was then conceptualized. But while J. J. Thomson, director of the Cavendish Laboratory in Cambridge, noted in 1897 that this was ‘the almost unanimous
opinion of German physicists’, he had results that implied otherwise. Thomson showed that cathode rays have negative electric charge, being deflected by electric and magnetic fields, and he concluded that they were in fact streams of particles. They were given the name proposed some years earlier by the Irish physicist George Johnstone Stoney for the smallest possible unit of electrical charge: electrons. As Lenard put it, electrons are the ‘quanta of electricity’.
Lenard discovered how to enable cathode rays to escape from the vacuum chamber in which they were created, so that they could be examined more closely. He also investigated the photoelectric effect—the expulsion of electrons from metals irradiated with ultraviolet light—and discovered that the energy of these electrons did not depend on the intensity of the light but only on its wavelength. When Einstein explained this result in 1905 in terms of Planck’s quantum hypothesis (see page 13), Lenard felt that his discovery had been stolen. That bitterness deepened when Einstein was awarded the 1921 Nobel Prize in Physics for his work on the photoelectric effect.
This was not Lenard’s only early source of resentment. He felt that he should have discovered X-rays before Wilhelm Röntgen (page 15), and was sure that he would have done so if the jealousies of senior professors had not denied him better opportunities. And hadn’t he offered Röntgen advice about constructing the cathode-ray tube used for this discovery, which Röntgen didn’t even have the good grace to acknowledge?
But if the German professors selfishly and unjustly hid their intellectual debts, the English were worse. Thomson should have given him more credit for his work on the photoelectric effect, for instance. This, however, was no more than one could expect from a nation of vulgar materialists—Lenard would surely have sympathy with Napoleon’s remark about shopkeepers—who knew nothing of the heroic, selfless Germanic Kultur. James Franck later claimed that, when he was fighting at the front in the First World War, Lenard wrote to him expressing his hope that the defeat of the English would make amends for their never having cited him decently.
An operation for an illness of the lymph nodes around 1907 left Lenard less able to work, and contributed to his difficulties in keeping up with the latest developments in physics. Because he was not mathematically adept, he could not get to grips with relativity or quantum theory. As a result, he decided they were nonsense. The fact that this nonsense—whose premier architect was Einstein—was being accepted and acclaimed by physicists all over the world must therefore be the result of a conspiracy. And conspiracies and cabals were the speciality of Jews.
Einstein was the embodiment of all that Lenard detested. Where Lenard was a militaristic nationalist, Einstein was a pacifistic internationalist. Einstein was feted everywhere, while Lenard’s great merits seemed to have been forgotten. Worse, Einstein was celebrated most of all in England! And he hawked a brand of theoretical physics that frankly baffled Lenard. How convenient, then, that Einstein was a Jew, so that all of these deplorable traits could be labelled Semitic. (Of course, many of Einstein’s supporters were not Jewish, but as we shall see, Lenard and his ilk later contrived to make them ‘honorary Jews’.) Lenard decided that relativity was a ‘Jewish fraud’ and that anything important in the theory had been discovered already by ‘Aryans’.*1
Lenard criticized the theory of relativity as early as 1910, but it was not until the 1920s that his attacks began to incorporate explicitly racial elements. He started to develop the notion that there was a Jewish way of doing science, which involved spinning webs of abstract theory that lacked any roots in the firm and fertile soil of experimental work. The Jews, he said, turn debates about objective questions into personal disputes. Ironically, this supposed preference of ‘Aryans’ for hale and hearty experiment went hand in hand with the kind of Romantic mysticism that infuses Nazi philosophy, such as it is. Lenard approved of the animistic Naturphilosophie of Goethe and Schelling, the belief in a spirit that animated all of nature. This pervasive soul of nature was the wellspring of science itself—and only Aryans, said Lenard, understood this: ‘It was precisely the yearning of Nordic man to investigate a hypothetical interconnectedness in nature which was the origin of natural science.’
Lenard persisted in believing in the light-bearing ether that Einstein had rejected, saying cryptically that this elusive medium ‘seems already to indicate the limits of the comprehensible’. He lamented the encroachment of technology in modern life: an expression, he said, of the kind of materialism that infected both Communism and the Jewish spirit, the twin enemies of German greatness. Materialistic natural science had eclipsed the ‘spiritual sciences’, giving rise to the ‘arrogant delusion’ that humankind can achieve the ‘mastery of nature’. ‘That influence has been strengthened by the all-corrupting foreign spirit permeating physics and mathematics’, he wrote—‘foreign’ here meaning, of course, Jewish.
The enthusiasm of the Nazi regime for this brand of mysticism and pseudoscience has been well documented, although perhaps not enough has yet been made of the resonances between fascism, Naturphilosophie, the cultish mysticism of Rudolf Steiner*2 and anthroposophy, and the cosy certainties of some New Age beliefs. Reified worship of nature (as opposed to respect for it) has always teetered on the brink of a fundamentally fascist ideology. Several Nazi leaders, including Hitler and Himmler, endorsed the ridiculous ‘cosmic ice’ theory of Austrian engineer Hans Hörbinger, which asserted that ice is the basic ingredient of the universe. Lenard’s musings on racial science and the ‘spirit of nature’ do not really rise above this level—they show that, even by the time of his Nobel award, he had nothing more significant to contribute to science, but had indeed become its opponent.
When, in the 1920s, Einstein began to experience racially motivated criticism and abuse in the German popular and academic press, Lenard joined in gleefully. At a meeting of the Society of German Scientists and Physicians in Bad Nauheim in September 1920, Einstein and Lenard were pitched head to head in a debate about relativity.
This confrontation followed an attack on Einstein at a public meeting held in Berlin the previous month, allegedly organized by the Working Group of German Scientists for the Preservation of Pure Science. There was in fact no such body, it having been concocted for the purpose by one Paul Weyland, a far-right fantasist without any real scientific training, who deplored Einstein’s theory on the sort of ‘common sense’ grounds that cranks still choose to employ today. Weyland presaged this event with a letter in the Berlin newspaper Tägliche Rundschau recycling old accusations that Einstein had plagiarized the insights of other scientists. The meeting itself took place in the capacious Berlin Philharmonic, where Weyland’s rant was accompanied by the distribution of anti-Semitic pamphlets and swastika lapel pins.
Weyland had announced that his lecture was the first in a series of twenty that would lay bare the deceptions of relativity. In the event, only one other followed, by the equally anti-Semitic applied physicist Ludwig Glaser (see page 90). The whole shabby affair aroused wide indignation: the letters of support for Einstein that appeared subsequently in the pages of the Berlin press were by no means all from his colleagues. Planck wrote to Einstein characterizing Weyland’s assault as ‘scarcely believable filth’. He and others feared that such things would drive Einstein to emigrate from Germany.
Einstein did remain in Berlin, but he was evidently unsettled. He went himself to Weyland’s meeting and, somewhat against his instincts and with rare misjudgement, he decided to respond publicly to the attack. His letter in the Berliner Tageblatt did at least contain a dash of humour to undercut the risk of pomposity, being titled ‘My Answer to the Anti-Relativity Theoretical Co. Ltd’. He admitted that the feeble criticisms of his theory did not really warrant a reply, but also pointed out that the real complaint of Weyland and his acolytes was that Einstein was ‘a Jew of liberal international bent’. Einstein also mentioned Lenard (who supported Weyland), saying ‘I admire Lenard as a master of experimental physics [but] his objections to the general theo
ry of relativity are so superficial that I had not deemed it necessary until now to reply to them in detail.’
The exchange at Bad Nauheim was no more illuminating, and certainly no more conciliatory. After the Berlin affair, this Einstein Debatte was widely anticipated, and the hall in which it took place was packed to the galleries, not just with scientists but with journalists and curious onlookers—and Weyland—who must have been thoroughly bored and mystified by the four hours of technical talks that preceded it. Accounts of the debate differ. Some newspapers reported that it was conducted calmly and objectively, but others stated that Planck, who as the society’s president was obliged to be the moderator, was forced on several occasions to intervene to prevent hecklers from interrupting Einstein. In any event, neither Einstein nor Lenard was pleased with the outcome. Einstein was highly agitated afterwards—he later admitted his regrets at ‘los[ing] myself in such deep humorlessness’—and his wife Elsa seems to have suffered something of a nervous breakdown. For his part, Lenard felt compelled to resign from the DPG in protest at the event, and he fixed a sign outside his office at Heidelberg announcing that the society’s members were not welcome within.
Physics for Hitler
Lenard was not the only influential scientist in the anti-Einstein camp. In 1919 the Nobel Prize in Physics was awarded to Johannes Stark for his discovery of the effect of electric fields on the energies of photons emitted from atoms as electrons jump between their quantum orbits.*3 In an electric field, the energy of an electron in a particular orbit splits into a whole series of different energies: rungs of a new quantized energy ladder. Stark’s discovery of this effect was of some importance, since it revealed a further level of quantum granularity in the structure of the atom. Nevertheless, the 1919 award was perhaps one of the Nobel Committee’s least auspicious decisions, for it inflated Stark’s already ponderous sense of self-importance and entitlement.